オンライン SPE-GC システムを用いた固相脱水誘導体化法 (SPDhD) による 尿中有機酸分析法の検討

- ○新川翔也 1, 佐々野僚一 1
- 1株式会社アイスティサイエンス

Validation of an analytical method for organic acids in urine by solid phase dehydration derivatization using online SPE-GC system

- OShoya Arakawa¹, Ryoichi Sasano¹
- ¹ AiSTI Science Co., Ltd.

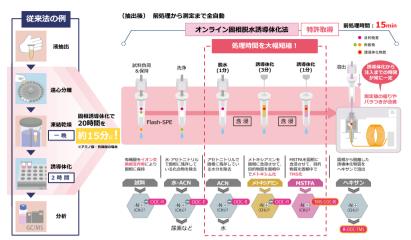
【目的】有機酸代謝異常症の化学診断法として尿中有機酸を対象としたトリメチルシリル 化処理と GC/MS 分析の組み合わせが頻用されている。当該分析法は GC の高いピーク分離 能と EI-MS の豊富なマススペクトルライブラリによる定性により多くの尿中成分を検出可能であるが、親水性成分である有機酸を揮発性の高い成分に変換するためにシリル化処理が必須である。また、シリル化処理前に抽出液を凍結乾燥処理する必要がありスループットを下げる一因となっている。

本発表では、固相脱水誘導体化法によって迅速に脱水処理と誘導体化処理を実施可能であり GC/MS 分析までを一貫して行うオンライン SPE-GC システムを用いて尿中有機酸分析法を検討した結果について報告する。

【方法】市販ヒト正常尿をサンプルとし、抽出操作後に水酸化ナトリウム溶液でpH8前後に調整したものをメタボローム分析用オンライン SPE-GC システム SPL-M100 (アイスティサイエンス) にセットした。前処理(試料負荷、洗浄、脱水、乾燥、誘導体化) および溶出から GC への注入と分析まで全自動で実施された。

【結果】内部標準物質として採用したノルロイシン、アジピン酸による添加回収試験(1点検量)では、100%に近い回収率が得られた。主な内在性成分についてもRSD7%以下(n=5)と良好な繰り返し精度が得られている。

【考察】通常、誘導体化反応はバッチ分析で行われるが処理後でも反応は進むことから精度低下の原因となっていると考えられる。本手法では GC 分析の直前に誘導体化が行われるため全サンプルで誘導体化反応時間を統一できる利点があり、繰り返し精度に反映されていると考えられる。今後は ERNDIM 尿有機酸定量スキームに挙げられている有機酸 26 成分に着目し、分析法の妥当性について評価していく。

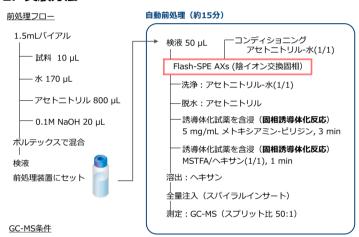

オンラインSPE-GCシステムを用いた固相脱水誘導体化法(SPDhD)による尿中有機酸分析法の検討

Validation of an analytical method for organic acids in urine by solid phase dehydration derivatization using online SPE-GC system

〇新川翔也, 佐々野僚一(株式会社アイスティサイエンス)

本演題に関連して、筆頭著者に開示すべきCOIはありません。

1. オンラインSPE-GCシステムによる固相脱水誘導体化法


オンラインSPF-GCシステムによる尿中ア ミノ酸・有機酸同時分析において、尿や血清 など種々の生体試料で良好な結果が得られて いる。本発表では代謝異常症の化学診断で分 析される尿中有機酸について、本システムを 用い前処理の検討を行ったため報告する。

オンラインSPE-GCシステム装着図

■ LAINCY-219100000	dramble out:			参考データ:アミノ酸有機酸同時分析メソッドに										
サンブル	No.		Adipic acid_2TMS		少ちエーツ:	バニ ,	ノ殴作	1戏[数]	可时刀	バルス	ンツ	1/1		
	S1	1,284,451	84,108											
り標	S2	1,243,248	77,955	よる尿中代謝物の分析結果										
STD	S3	1,169,708	73,754											
ベイアル中20μM	S4	1,183,814	73,368											
	S5	1,131,803	73,641											
-	Ave.	1,202,605	76,565	- 60	water and the second and the									
	RSD, %	5.1	6.0	■ pyc	から検出された主成分のビーク語	は特別とてい	丹班注 (n	=5 ; KSD,	70)					
₹10µL	尿-K1	1,400,444	99,683	No.	化合物名	FR-1	原-2	尿-3	尿-4	尿-5	Ave.	RSD, %		
.00D	尿-K2	1,415,794	98,689	1	Alanine_2TMS	180,899	188,241	182,938	187,713	183,349	184,628	1.7		
	尿-K3	1,395,904	99,474	2	Ethanolamine_3TMS	486,231	499,319	511,776	491,099	499,867	497,658	2.0		
ち標	尿-K4	1,415,822	98,843	3	Glycine_3TMS	113,691	111,586	113,681	113,461	115,306	113,545	1.2		
由出後添加	尿-K5	1,391,498	96,746	4	Serine_3TMS	137,104	142,004	135,803	142,205	140,908	139,605	2.1		
ペイアル中20µM	Ave.	1,403,892	98,687	5	Threonine_3TMS	12,057	13,193	12,294	12,865	12,957	12,673	3.8		
	RSD, %	0.8	1.2	6	3-Aminoisobutyric acid_3	35,108	34,875	34,061	39,025	35,149	35,644	5.4		
(K/Sx100)	REC, %	117	129	7	Threonic acid_4TMS	46,558	43,938	43,553	46,164	45,096	45,062	2.9		
₹10µL	尿_A1	1,451,203	106,679	8	Creatine_3TMS	71,004	68,064	69,480	69,156	73,464	70,234	3.0		
.00D	尿_A2	1,521,654	103,472	9	p-Hydroxyphenylactic aci	7,510	7,593	7,418	7,995	8,074	7,718	3.8		
5標	尿_A3	1,477,161	99,614	10	Aconitic acid_3TMS	18,060	17,740	18,623	18,335	17,708	18,093	2.2		
表に添加	尿_A4	1,434,121	100,407	11	Citric acid_41MS	319,248	313,843	321,899	328,974	324,604	321,714	1.8		
式料中2mM	尿_A5	1,533,918	98,048	12	L-Lysine_4TMS	26,531	26,314	27,691	25,908	27,728	26,834	3.1		
バイアル中20µM)	Ave.	1,483,611	101,644	13	Tyrosine_3TMS	67,041	67,289	65,806	67,529	66,123	66,758	1.1		
	RSD, %	2.9	3.4	14	Gluconic acid_6TMS	23,901	21,094	22,881	23,351	20,520	22,349	6.6		
	田収率,%	123	133	15	Glucopyranuronic acid_51	90,468	97,764	91,691	99,144	93,550	94,523	4.0		
(A/Kx100)	田収率,%	106	103	16	Uric acid-4TMS	358,265	365,984	362,302	356,388	382,576	365,103	2.9		

2. 実験方法

注入口条件

注入口温度 220℃(0.5 min)-125℃/min-290℃

セプタムパージ流量 3 mL/min スプリット比 50:1

GC条件

カラム DB-5ms UI, 0.25mm i.d. x 30m, df;0.25µm

制御モード コンスタントフロー

カラム流量 1 mL/min

オーブン温度 80°C(1 min)-20°C/min-220°C-30°C/min-310°C(3 min)

Total 14 min

MS条件

トランスファーライン温度 290℃ イオン源温度 250℃

取得モード Scan (m/z 70-470)

4. 添加回収試験

妥当性評価の一つとして添加回収試験を行った。対象成分はERNDIM有機酸定量スキームの分 析対象有機酸からピックアップし、添加濃度は尿中濃度1mM(バイアル中0.01mM)とした。

3. 定性分析

トータルイオンクロマトグラムと主要な検出ピーク

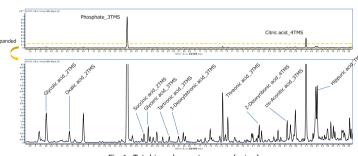


Fig 1. Total ion chromatograms (urine)

Table 1. Detected and Annotated peaks from Urine samples

RT	Quant		Urine									
(min)	mass	Metabolite name	1	2	3	Ave. (n=3)	RSD% (n=3)					
4.207	147	Glycolic acid_2TMS	65,342	69,423	86,990	73,918	15.6					
4.642	147	Oxalic acid_2TMS	26,835	27,427	31,619	28,627	9.1					
5.712	205	Glycerol_3TMS	21,719	22,060	22,135	21,971	1.0					
5.726	299	Phosphate_3TMS	2,583,535	2,596,388	2,591,583	2,590,502	0.3					
6.043	147	Succinic acid_2TMS	16,625	17,012	19,594	17,744	9.1					
6.123	73	Glyceric acid_3TMS	10,344	11,616	14,659	12,206	18.2					
6.215	117	(R,R)-2,3-DiOH-butyric acid_3TMS	4,340	4,663	4,713	4,572	4.4					
6.28	117	(R,S)-2,3-DiOH-butyric acid_3TMS	6,548	6,474	6,995	6,672	4.2					
6.519	147	Tartronic acid_3TMS	5,816	6,965	7,938	6,907	15.4					
6.691	103	3-Deoxytetronic acid_3TMS	6,235	5,978	6,832	6,348	6.9					
7.523	73	Threonic acid_3TMS	37,962	37,871	41,321	39,051	5.0					
7.742	129	2-Hydroxyglutaric acid_3TMS	2,264	2,381	3,000	2,548	15.5					
8.091	219	Tartaric acid_4TMS	2,455	2,644	2,685	2,595	4.7					
8.19	179	4-OH-benzeneacetic acid_2TMS	3,832	3,954	3,927	3,904	1.6					
8.211	147	2-Deoxyribonic acid_4TMS	10,168	9,493	9,363	9,675	4.5					
8.737	73	cis-Aconitic acid_3TMS	18,971	19,469	20,135	19,525	3.0					
8.806	217	alpha-Ketogluconic acid_5TMS	4,274	4,670	4,733	4,559	5.5					
9.092	273	Citric acid_4TMS	250,536	247,990	269,106	255,878	4.5					
9.27	245	3-Deoxyhexonic acid_5TMS	44,338	44,432	45,017	44,596	0.8					
9.28	345	Quininic acid_5TMS	37,510	36,901	38,393	37,601	2.0					
9.304	206	Hippuric acid_TMS	72,874	83,451	91,738	82,688	11.4					

標準溶液を添加した尿検体についてもほぼ同様の結果が得られていることを確認している。

添加回収試験の結果、Table 2 に示すヒドロキシ酸およびジカルボン酸について、良好な再現 性と回収率が得られた。Table 1 の定性結果と合わせて本メソッドの有用性が示された。

Table 2. Peak area of spiked compounds and these recovery rates

RT Quant		Standard solution (0.01 mM in vial)								Urine				Spiked urine (0.01 mM in vial)								Recov.		
(min)		Metabolite name	1	2	3	4	5	6	7	Ave. (n=7)	RSD% (n=7)	1	2	3	Ave. (n=3)	1	2	3	4	5	6		RSD% (n=6)	(%)
4.755	219	3-OH-propanoic acid_2TMS	5,741	4,918	5,181	4,677	5,634	5,283	4,713	5,164	8.2	635	551	718	635	5,118	4,943	5,587	4,775	5,695	5,909	5,338	8.5	91
4.877	191	3-OH-Butyric acid_2TMS	43,683	43,636	48,393	42,089	52,672	48,149	41,517	45,734	9.0	2,965	2,703	3,101	2,923	44,957	40,253	48,520	41,584	55,189	59,498	48,333	15.9	99
5.299	147	Methylmalonic acid_2TMS	185,489	179,287	176,565	158,482	187,650	171,943	167,847	175,323	5.8	1,990	1,443	1,304	1,579	203,090	182,843	200,616	174,325	195,054	207,241	193,861	6.6	110
5.788	147	Ethylmalonic acid_2TMS	168,240	145,107	157,968	138,629	172,852	156,418	150,284	155,643	7.8	3,534	3,558	3,537	3,543	188,453	176,591	184,709	163,389	183,098	193,889	181,688	5.9	114
6.297	245	Fumaric acid_2TMS	113,255	96,838	110,286	97,880	121,117	111,755	103,835	107,852	8.1	876	669	707	751	134,646	129,050	132,942	117,551	129,343	137,906	130,240	5.4	120
6.678	147	Glutaric acid_2TMS	84,383	74,537	82,627	75,487	94,639	88,981	80,549	83,029	8.6	4,723	4,421	4,754	4,633	102,799	99,197	105,465	95,658	101,802	112,543	102,911	5.6	118
7.341	73	Adipic acid_2TMS	50,653	46,470	50,805	48,180	59,242	56,860	50,977	51,884	8.8	2,665	2,842	9,426	4,978	69,539	68,196	70,187	63,632	67,048	75,086	68,948	5.5	123

4. まとめ

オンラインSPE-GCシステムを用いた固相脱水誘導体化による尿中有機酸分析法の検討を行っ た。本手法を用いて市販尿を分析した結果、主要なピークとしてリン酸およびクエン酸が見出さ れた一方で、尿素については検出されなかったことから固相による精製効果により除去されたと 考えられる。本分析法はウレアーゼ処理が不要であり、抽出操作以降の自動前処理が可能である ことから既存手法と比較してハイスループットな分析法といえる。

4. 展望

今回は7成分でのみの添加回収試験であったが、ケト酸など対象成分数を増やしてERNDIM の尿分析精度管理スキームに耐えうる手法として確立していきたい。オンラインSPE-GCシス テムでは固相と前処理メソッドの切り替えによって他の成分にも対応できる汎用性があるた め、有機酸分析のみならずアミノ酸など他の成分についても検討していく予定である。