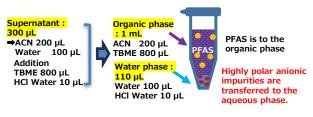


A Simple, Rapid, and Highly Sensitive Multicomponent Simultaneous Analysis Method for PFAS Combining Liquid-Liquid Extraction and Solid-Phase Extraction in Food and Serum

Introduction


Analysis of PFAS in food and serum involves numerous interfering components, requiring significant time and effort for sample preparation. Furthermore, as the number of target analytes increases, the complexity of sample preparation continues to grow. In this application, we first reduced the burden on the solid phase by removing highly polar ionic interferents at high concentrations via liquid-liquid extraction. Next, sensitivity and purity were improved by retaining and concentrating PFAS via anion exchange solid-phase extraction while removing non-ionic contaminants. Furthermore, by employing an automated online SPE-LC/MS system integrating solid-phase extraction with LC/MS measurement, we introduce a rapid, simple, and highly sensitive multi-component simultaneous analysis method.

Experimental Methods

■ Removal of Highly Polar Ionic Impurities by Liquid-Liquid Distribution

[Key Points for Liquid-Liquid Separation 1]

■ Solid-phase extraction by ion exchange

Impurities lacking anions are removed.

Load [Hold] & Cleaning

Retention of anionic PFAS in ACN-TBME by ion exchange onto cationic solid-phase WAXs.

Elution

The alkaline environment deionizes the solid-phase waxes, eluting the target substances.

[Key Points for Liquid-Liquid Separation2]

The addition of HCl suppresses the dissociation of carboxyl groups, preventing dissociation and enabling hydrophilic PFAS to migrate into the organic phase.

Effect of liquid-liquid partitioning: While adsorption via anion exchange may be affected by anionic impurities such as nitrate ions, potentially reducing the retention of target substances, prior removal through partitioning liquid-liquid enabled recovery without compromising retention capacity.

SPL-W10C for SPE-LC system

Sample

Information

The 33rd Environmental Chemistry Symposium

"Development of a Rapid, Simple, and Highly Sensitive Multicomponent Simultaneous Analysis Method Combining Liquid-Liquid Extraction and Solid-Phase Extraction for PEAS in Food and Serum"

Ryoichi Sasano1, Heesoo Eun2 1AiSTI Science Co., Ltd., 2National Agriculture and Food Research Organization

Key Word

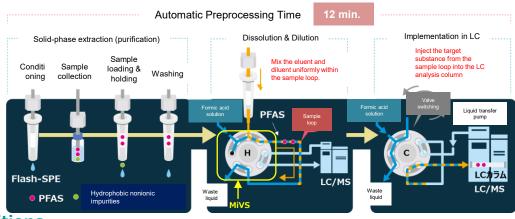
PFAS Solid-phase extraction Online SPE-LC/MS/MS

AISTI SCIENCE

Product SPL-W100

Flash-SPE WAXs

AiSTI SCIENCE CO.,Ltd.


TEL: +81-73-475-0033 E-Mail: <u>as@aisti.co.jp</u>

HP: www.aisti.co.jp

Online SPE-LC/MS System

This system achieves "reduced sample volume," "shortened time," pretreatment "online operation" through the use of the dedicated solidphase cartridge Flash-SPE and the mixed injection valve system [MiVS].

Furthermore, by overlapping the pretreatment (solid-phase extraction) and instrument measurement steps, analysis is performed more efficiently, enabling high throughput.

Measurement conditions

[Equipment]

SPL-W100(AiSTI SCIENCE)、 LCMS-8045(Shimadzu)

[LC conditions]

Delay Column: Inertsil ODS-3, 3 μ m, 3.0 mm ID \times 33 mm (UP) Analytical Column: Inertsil ODS-3, 3 μ m, 2.1 mm ID \times 75 mm

Mobile Phase A: 2 mM ammonium acetate-water

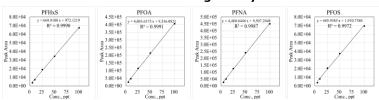
B: 2 mM ammonium acetate-MeOH-acetonitrile (1/1)

Flow rate: 0.3 mL/min

Gradient: B.Conc. 30% (0-0.25 min) → 40% (0.5-2.5 min)

 \rightarrow 100% (9-12 min) \rightarrow 30% (12.5-15 min)

Column temperature: 40 °C


[MS condition]

Ionization mode: ESI Negative Measurement Mode: MRM

SPL-W100(AiSTI SCIENCE) Result LC-MS-8045(Shimdzu)

Absolute calibration curve using this system

Additive Recovery Test: Additive recovery tests were conducted using horse mackerel, milk, and serum. For the three components FOSA, NMePFOSA, and NEtPFOSA, recovery was not achieved. This is likely because they lack anionic properties, resulting in weak retention on the WAX, and because loading with hydrophobic organic solvents prevents retention on the WAX. For the other major components, good recovery rates and reproducibility were obtained in all samples.

Blank Countermeasures: The solvent used in solid-phase extraction was incorporated into the pretreatment apparatus to pass through a filter (adsorbent) beforehand, thereby reducing contamination.

Summary

Using this system, combining liquid-liquid partitioning after protein removal with solid-phase extraction enabled rapid, simple, and highly sensitive simultaneous multi-component analysis of PFAS even in samples

References

rich in impurities, such as food and serum.

Table: Recovery Rates and Reproducibility of PFAS in Each Sample (n=5)

		Mackerel 2 ppb Addition		Milk		Serum	
N o.	Ingredient Name			1 ppb Addition		1 ppb Addition	
		recovery rate %	RSD n=5, %	recovery rate %	RSD n=5, %	recovery rate %	RSD n=5, %
1	PFBA	71	7.1	82	3.4	106	5.1
2	PFMPA	69	5.9	88	4.1	91	1.8
3	PFPeA	90	3.2	89	6.3	102	9.4
4	PFMBA	73	8.4	88	3.8	91	6.3
5	PFBS	107	2.4	79	6.5	108	11.1
6	4:2 FTS	94	8.1	60	6.0	121	8.0
7	NFDHA	147	4.3	94	4.9	185	7.3
8	PFHxA	93	3.5	84	4.2	94	6.4
9	PFEESA	90	4.0	89	2.1	105	5.7
10	HFPO-DA	87	4.5	85	6.3	91	8.8
11	PFPeS	107	4.1	84	7.2	106	9.2
12	PFHpA	94	3.8	85	3.6	95	5.7
13	PFHxS	106	4.3	92	8.6	107	6.1
14	6:2FTSA	130	4.7	81	6.3	192	5.1
15	PFOA	108	2.1	85	3.0	102	3.9
16	PFHpS	107	4.3	88	2.9	102	10.7
17	8:2 FTUCA	123	1.6	86	4.2	115	7.1
18	PFNA	101	1.6	88	4.3	102	4.7
19	FOSA ¹⁾	-	-	-	-	-	-
20	PFOS	96	3.7	80	3.8	82	5.1
21	8:2FTSA	142	8.1	80	8.1	133	10.7
22	PFDA	99	4.4	88	2.9	106	6.6
23	NMeFOSAA	113	5.1	97	4.1	135	8.2
24	PFNS	80	5.3	88	3.6	96	9.7
25	N-MeFOSA ¹⁾	-	-	-	-	-	-
26	NEtFOSAA	51	4.9	87	7.5	93	7.4
27	PFUnA	_2)	3.2	85	2.6	84	4.7
28	PFDS	93	5.6	93	4.4	98	2.6
29	N-EtFOSA ¹⁾	-	-	-	-	-	-
30	PFDoDA	63	3.9	83	3.6	77	5.2
31	PFTrDA	74	2.6	80	5.0	87	7.5
32	PFTeDA	89	4.2	80	3.7	98	5.8
33	PFHxDA	74	6.0	86	3.3	98	5.8
34	8:2 diPAP	89	2.0	87	6.7	79	8.9
35	PFOcDA	113	2.6	94	3.4	138	5.3
Components for which recovery could not be obtained							

2) Recovery rate could not be evaluated due to peaks from unknown samples *Calculations are based on absolute area values without corrections using stable isotopes or similar methods.

Sasano et al., 3rd Joint Conference on Environmental Chemical Substances: "Development of an Analytical Method for PFOA in River Water Using Online SPE-LC/MS"