Large Volume Injection for Capillary Gas Chromatography Using new PTV Injector with a Liner in the Shape of a Stomach

R. Sasano, Y. K. Kwon, K. Kiji, N. Shikama, Y. Nakanishi

[Introduction] We have developed new PTV injector for capillary gas chromatography with "stomach" shaped liner inserted in it. At beginning, injection temperature is kept just below the boiling point of the solvent, and injected sample can stay in the liner as liquid. This unique "stomach" shaped liner has brought many advantages for large volume injection.

[Large Volume Injection method]

1st stage; The injector is kept at a temperature lower than the boiling point of sample solvent. Sample is injected into the liner, and stays there as liquid state.

 2^{nd} stage; While the evaporated sample solvent is exhausted in the split purge mode, the target compounds are concentrated in the liner. 3^{rd} stage; Target compounds are transferred to the capillary column at an elevated injector temperature in the splitless mode. 4^{th} stage; Matrix compounds are eliminated from the liner in the split purge at further elevated injector temperature.

Fig. 1 "Stomach" shaped liner

[Results and Discussion]

We have studied the performance of large volume injection of this injector. We have used, as sample, n-hydrocarbons, PAHs, PCBs and pesticides. Good linearity has been obtained between each peak area of n-hydrocarbons (n-C12-C30) and its injection volume (i.e. 10, 20, 30, 40, 50 μ L). Sample of 50 μ L volume was injected and analyzed repeatedly (n=7). We have got good repeatability of 2% or less RSD (Relative Standard Deviation) on each n-hydrocarbon peak area.

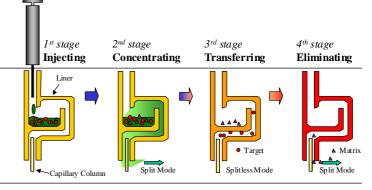
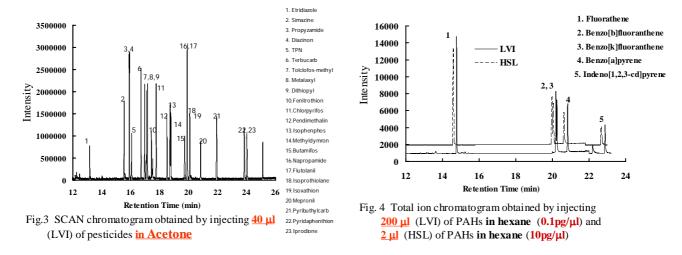
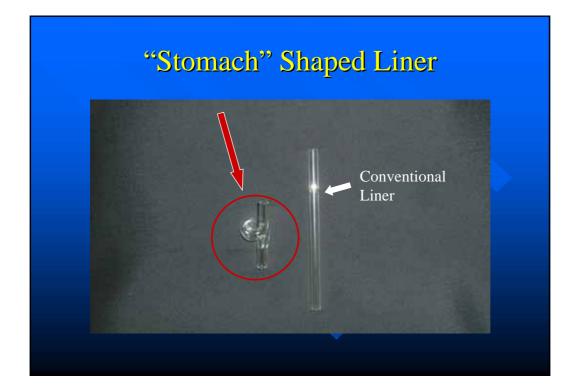
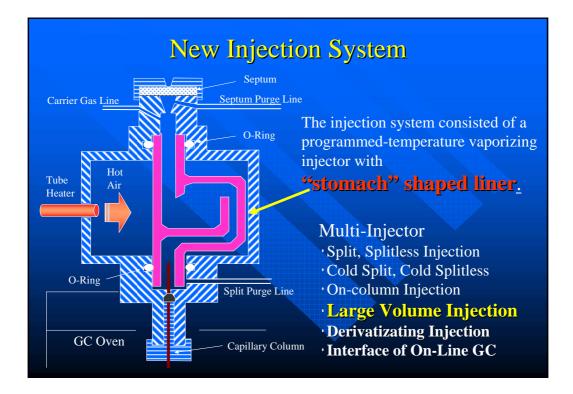
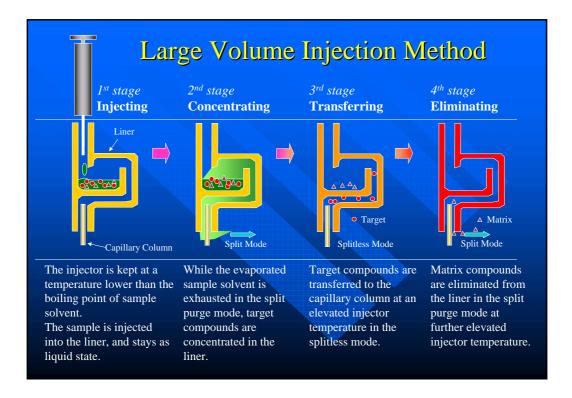




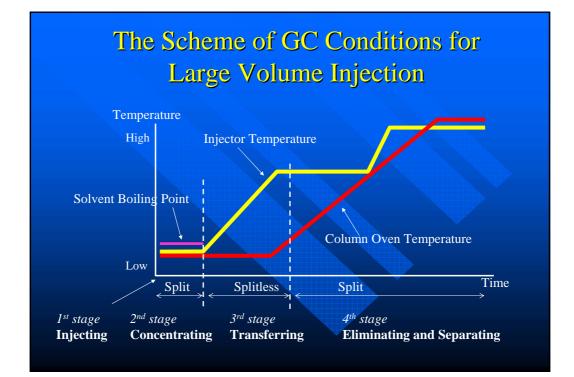
Fig. 2 Scheme of large volume injection method

Saika Technological Institute Foundation,

75-2, Kuroda Wakayama-city Japan Tel; +81-73-474-0860 Fax; +81-73-474-0862 E-mail; sasano@saika.or.jp

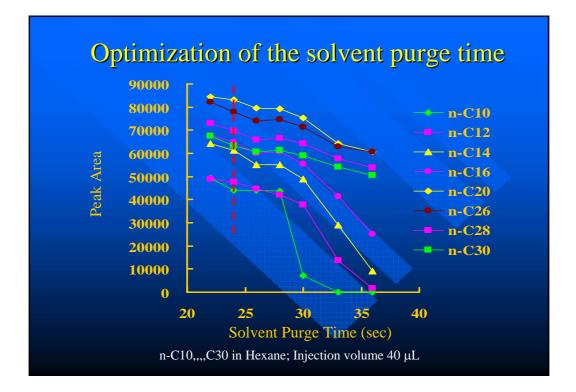


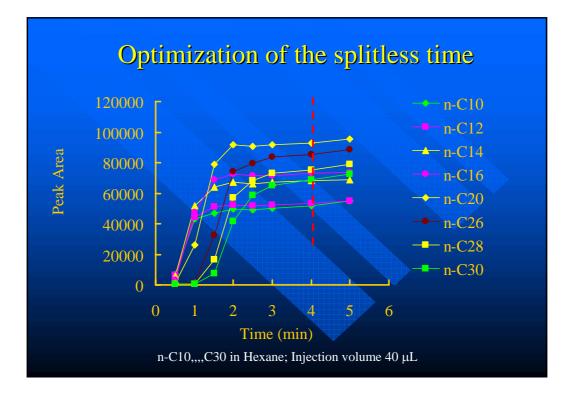

Abstract

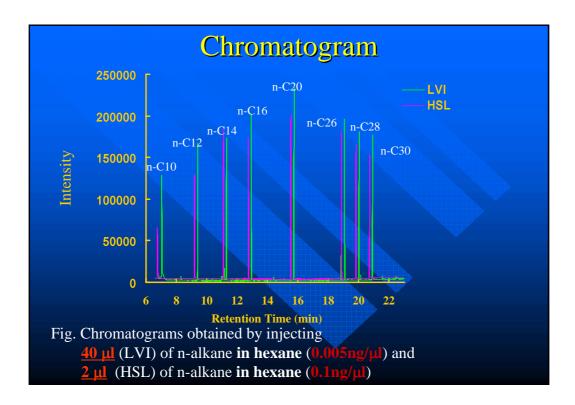

We have developed new PTV injector for capillary gas chromatography with ****Stomach**** shaped liner inserted in it. At beginning, injection temperature is kept just below the boiling point of the solvent, and injected sample can stay in the liner as liquid.

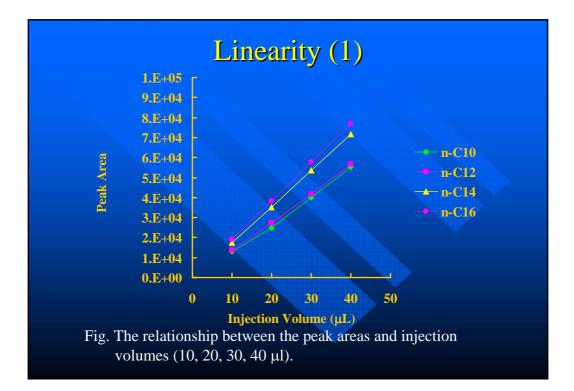
This unique "stomach" shaped liner has brought many advantages for **large volume injection**. Here, we have discussed on many parameters like a type of solvent, injection volume, <u>split purge flow rate</u>, and <u>split/splitless time</u>. Some of these parameters often give important effect on large volume injection technique obtaining good sensitivity, repeatability, or accuracy of data.

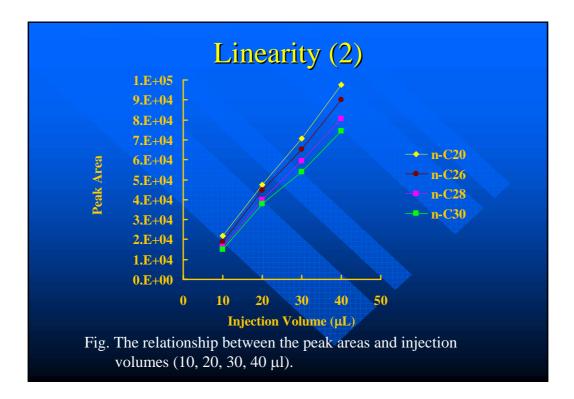
We have studied large volume injection technique using this injector by injecting n-hydrocarbons, PAHs, PCBs and pesticides. We have determined optimum conditions of the injector to get best results in various type of solvent.



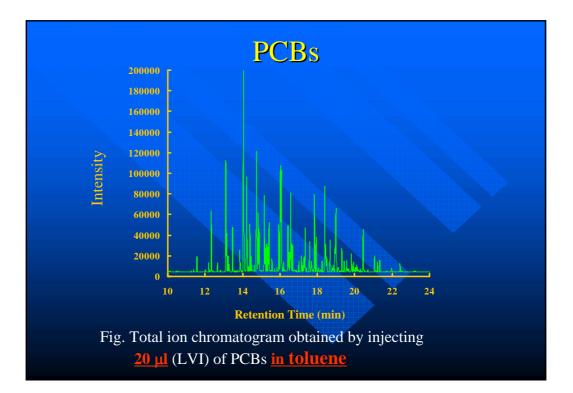


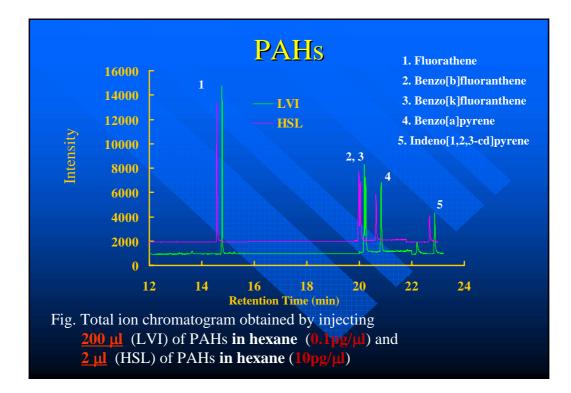


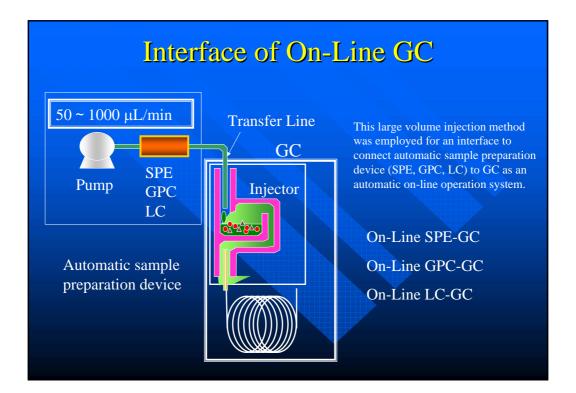

Operating Conditions of	
Injector and GC/MS	


Injector	LaviStoma (EMINET)
Injector Oven Temp. Solvent Purge Time	69 -100 /min-270 (20min) 12 sec
Auto-Sampler	AOC-20i (Shimadzu)
GC/MS	QP5050A (Shimadzu)
Pre-column Column	Deactivated silica capillary tube 0.53mm × 0.5m DB-5MS 0.25mm × 30m, 0.25µm
Column Oven Temp. Detector Temp	50 (4min)-15 /min-315 (3min) 300
MS Method Carrier Gas Press	SIM 201-Do 601 -Do $(4min) \in 21$ -Do $(min) = 1711$ -Do $(2min)$
Splitpurge Flow	20kPa-60kPa(4min)-6.3kPa/min-171kPa(3min) 150 ml/min
Splitless Time	4 min









			-		uci				
Table Pea	k are	as of	the n-	-alkai	ies, a	verag	e are	as and	a relative
stand	lard d	eviati	ions (R.S.I	D.).				
Compound	#1	#2	#3	#4	#5	#6	#7	#8	
n-C10	57465	51172	49832	52175	49285	48795	48666	52475	
n-C12	57007	55262	54955	55701	54556	53511	54183	56555	
n-C14	71474	69488	68903	69481	67529	66156	68386	70176	
n-C16	76798	75169	74463	74394	73390	73021	75292	75571	
n-C20	97979	95868	96234	95794	94827	94423	96356	96473	
n-C26	90071	91688	89817	90662	87406	87001	89921	89811	
n-C28	82609	81358	79343	80507	78297	78564	80017	80723	
n-C30	75970	74822	73243	75688	74151	73492	74987	75817	
Compound	#9	#10	#11	#12	#13	#14	#15	Ave.	RSD(%)
n-C10	57813	54758	636 <mark>63</mark>	66097	51324	51415	52858	53853	
n-C12	54558	53766	56513	56928	55022	55649	55608	55318	
n-C14	68280	66573	70789	70938	68802	69554	69727	69084	
n-C16	73940	71708	76300	7657 <mark>8</mark>	74089	76538	75586	74856	
n-C20	95321	94970	98971	98405	96841	97975	97946	96559	
n-C26	91589	92683	95061	95372	93360	94678	94747	91591	
n-C28	80805	82380	85617	85720	82771	85824	85186	81981	
n-C30	77339	78448	79743	79869	79956	80383	79710	76908	

