オンライン SPE-GC/MS システムを使用した固相捕集-溶媒溶出法による

揮発性メチルシロキサン分析法の開発

株式会社アイスティサイエンス 〇浅井智紀*、佐々野僚一、埼玉県環境科学国際センター 堀井勇一

* asai-to@aisti.co.jp

Development of solid-phase trapping and solvent elution method for volatile methyl-siloxanes using online SPE-GC/MS system, by Tomonori Asai, Ryoichi Sasano (AiSTI SCIENCE Co., Ltd.), Yuichi Horii (Center for Environmental Science in Saitama)

1. はじめに

揮発性メチルシロキサン(VMS)は、シリコーンポリマー製品の原料、化粧品などの日用品の溶剤中に含まれる化学物質であり、環境中残留性や生態毒性等の懸念から、環境影響評価が進められている。VMS は高揮発性を有することから、大気中への放出量の調査等が進められる一方で、河川などの環境水中の排出量などについても調査が行われている(Horii et al, 2017)。本演題では、オンライン SPE-GC/MS システムを使用し、固相捕集・溶媒溶出法による水試料中の VMS 分析について検討した結果を報告する。

2. 実験方法

本実験では、オンライン用固相抽出装置 SPL-P100FE (アイスティサイエンス)とガスクロマトグラフ質量分析計を組み合わせたオンライン SPE-GC/MS システムを使用した。固相捕集-溶媒溶出法のスキーム (図 1) は、①試料を入れたバイアルをヒーターブロックで加温して目的成分を気相へ抽出後、ミキサーで攪拌、②固相カートリッジ下部にプレスフィットでニードルを取り付け、固相上部に付けたチューブを通してシリンジポンプで気相を吸い上げ、目的成分を固相へ捕集、③固相へ窒素ガスを流し、水分を除去、④、⑤固相上部よりへキサンを流して目的成分を溶出しながら、溶出液の全量を胃袋型インサートを備えた GC へ注入、とした。以上の方法を用いて水試料中の VMS 分析を検討した。

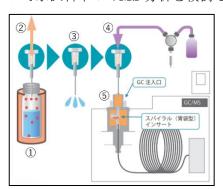


図 1 固相捕集-溶媒溶出法の概要

本実験では、3~6 量体の環状 VMS(D3-D6)および

鎖状 VMS(L3-L6)を測定対象とした。また、固相カートリッジの充填剤にはスチレンジビニルベンゼンポリマー充填剤を用いた。

3. 実験結果

測定対象としたいずれの成分においても今回検討 した分析法を用いて検出が可能であった。また、装置 および固相からの大きなブランクの検出は認められ なかった。試験に使用した精製水からは、D5, D6 の 若干高値のブランクが検出されたものの、そのブラ ンク値は安定していた。精製水および河川水に標品 を添加して測定したところ、いずれの成分において も 0.01-0.2 ppb の範囲において良好な直線性(R^2 = 0.995 以上)を得ることができた。河川水に 0.1 ppb となるように添加した試料の繰り返し測定(5回)で は、5,6 量体の RSD が 10%以下であり、3,4 量体の RSD は 11-15%の範囲であった。また、添加濃度 0.1 ppb での添加回収試験において、D3, L6 の回収率が 70-80%となり、その他の成分においては回収率が 80-110%となる良好な結果が得られた。上記の結果 については、装置精度の正確な評価のため、内部標準 による補正を行っていない。

4. 考察

今回検討した手法により、河川水中の VMS の分析が可能であった。前処理工程を自動化することで、人為的な操作エラーを軽減することができると考えられた。加えて、本手法では GC/MS 測定と前処理を並行処理することで、約 20 分の分析サイクルでの効率化を実現できた。

5. 結論

今回開発した装置により、VMS の自動前処理化が可能であり、環境分析に有用な手法として期待された。

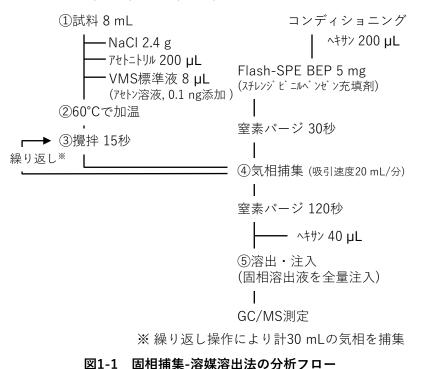
参考文献

Y. Horii et al., Distribution characteristics of volatile methylsiloxanes in Tokyo Bay wasters in Japan: Analysis of surface waters by purge and trap method. Science of Total Environment 586, 56-65, 2017.

P-K-03

揮発性メチルシロキサン分析法の開発

株式会社アイスティサイエンス 〇浅井智紀 *、佐々野僚一 埼玉県環境科学国際センター 堀井 勇一



はじめに

揮発性メチルシロキサン(VMS) は、シリコーンポリマーの原料、 化粧品などの日用品の溶剤中に含まれる化学物質であり、環境中残 留性や生態毒性等の懸念から、環境影響評価が進められている。本 研究では、環境水中のVMS(環状VMS[D3-D6]および直鎖状 VMS[L3-L6])分析を目的とし、オンラインSPE-GC/MSシステムに よる分析法について検討した結果を報告する。

実験方法

オンラインSPE-GC/MSシステムを使用した固相捕集-溶媒溶出法 の分析フロー(図1-1)と概要(図1-2)を示した。

「オンラインSPE-GC/MSシステム構成】

前処理装置: SPL-P100FE [アイスティサイエンス] 測定装置: GC-MS JMS-TQ4000GC [日本電子]

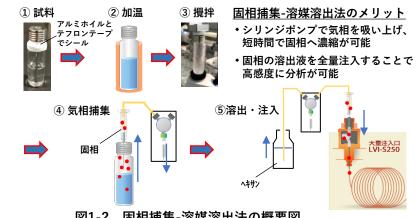
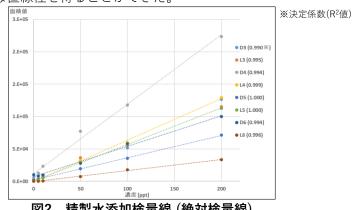
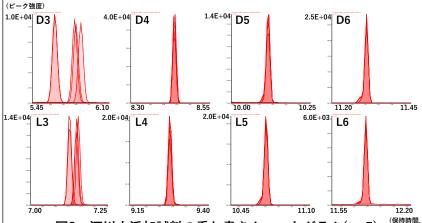



図1-2 固相捕集-溶媒溶出法の概要図

実験結果

精製水にVMS標品を0-200 pptになるように添加した試験液を測定 し、作成した検量線(6点)を図2に示した。いずれの成分において も良好な直線性を得ることができた。



精製水添加検量線(絶対検量線)

河川水にVMS標品を100pptになるように調製した試験液を用いた 添加回収試験の回収率および5回測定のRSD%、操作ブランク値 (ppt)および3回測定のRSD%を表1に示した。回収率は精製水添加 の標準試料より作成した絶対検量線から算出した。河川水添加試 料の連続5回測定した重ね書きクロマトグラムを図3に示した。

表1 回収率結果と操作ブランク値

化合物名	平均回収率 (n=5)	RSD%	操作ブランク平均値 (ppt, n=3)	RSD%
D3, Hexamethylcycrotrisiloxane	90	5.2	3.6	24.9
L3, Octamethyltrisiloxane	95	11.4	nd	
D4, Octamethylcyclotetrasiloxane	92	10.6	9.8	24.6
L4, Decamethyltetrasiloxane	92	10.4	nd	
D5, Decamethylcyclopentasiloxane	87	6.4	11.5	28.8
L5, Dodecamethylpentasiloxane	93	4.6	1.1	14.3
D6, Dodecamethylcyclohexsiloxane	91	2.1	17.2	20.3
L6, Tetradecamethylhexasiloxane	96	4.4	1.5	39.8

河川水添加試料の重ね書きクロマトグラム(n=5)

まとめ

今回の検討した手法により、河川水中のVMSの前処理からGC/MS 測定まで自動分析が可能であった。