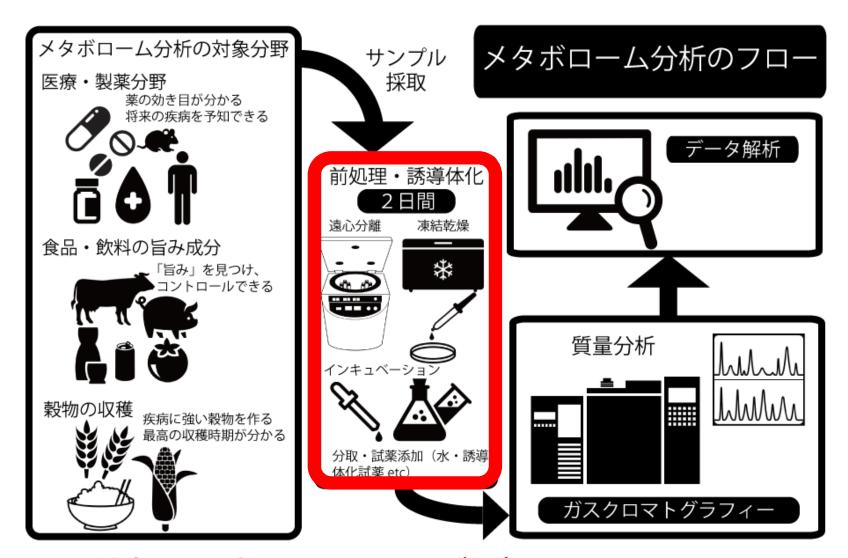
JASIS 2020 新技術説明会

> オンライン固相誘導体化SPE-GC SGI-M100

メタボロミクス革命!

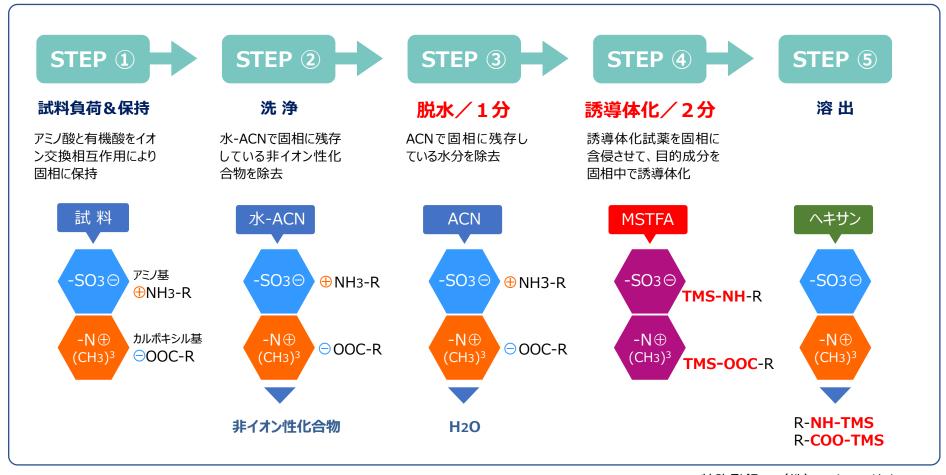
特許技術「固相誘導体化」で前処理15分の全自動分析を実現



2020年11月12日 株式会社アイスティサイエンス 佐々野僚一

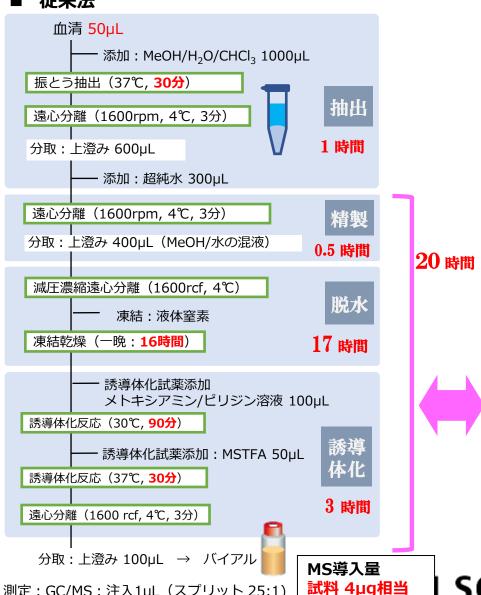
Beyond your Imagination

メタボロミクスの現状



前処理時間の長さがボトルネック!

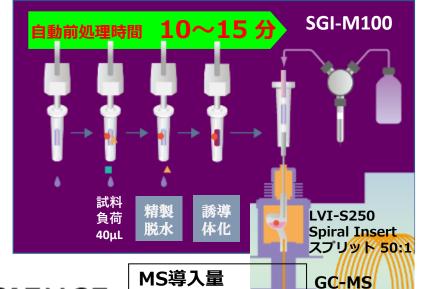
固相誘導体化法


前処理2日を15分に変える新技術!

特許登録: (株) アイスティサイエンス

従来法と本法の前処理比較

従来法



測定: GC/MS: 注入1µL(スプリット 25:1)

本法

オンライン固相誘導体化SPE-GC-MS

試料 25µg相当

SCIENCE

オンライン固相誘導体化のメリット

- 脱水が簡単に短時間
- 誘導体化時間も短時間
- 誘導体化工程から測定まで完全自動化
- 誘導体化してから測定までが常に一定
- 従来法と比較して、高感度分析が可能
- トリグリセリドなどのGCMSを汚してしまうような脂質は 固相抽出で精製することができる。
- 糖類を多く含む試料においては糖類を固相抽出で除去する ことができる。
- 固相で精製できるため、抽出工程を簡易化できる。

SPE-GC-MS system

SGI-M100とアジレント社製GCMS

SGI-M100と島津社製GCMS

前処理条件:アミノ酸・有機酸(マウス血清)

【抽出】 【オンライン固相誘導体化法】 **Automation** 試料採取 50µL バイアル - 添加 水 150µL コンディショニング ACN-水(1/1) - 添加 アセトニトリル 800μL **Flash-SPE ACXs ACN** 振とう (37 ℃, 30 min) **負荷[保持] 抽出上澄液** 50 μL 分取 遠心分離 14000 rpm, 3 min 洗浄 ACN-水(1/1) 脱水 ACN 分取 抽出上澄液 250 μL 含侵 0.5%メトキシアミン/ピリジン 4µL 添加 水 250 µL 固相誘導体化反応 メトキシム化, 3 min 添加 0.1N NaOH 含侵 MSTFA-Toluene(3/1) 8µL 抽出上澄液 固相誘導体化反応 TMS化, 1 min

AISTI SCIENCE

溶出 ヘキサン

GC-MS スプリット 1:50

測定条件

SPE-GC Interface SGI-M100 (AiSTI Science)

SPE Cartridge Flash-ACX

Sampling Volume 50 μL

PTV Injector LVI-S250 (AiSTI Science)

Insert Type Spiral Insert

Injector Temp. 220° C(0.5min)- 50° C/min- 290° C(16min)

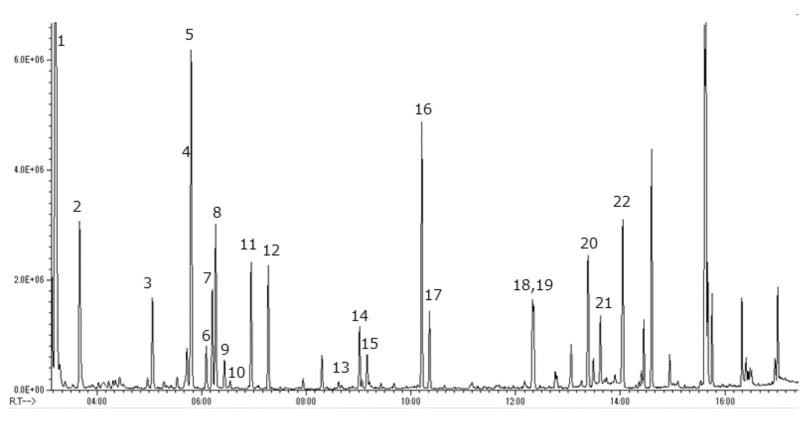
GC

Inlet Mode Split 1:50

Flow Mode Constant Flow, 1 ml/min

Pre-Column 0.25mm i.d. x 1m

Column Vf-5ms, 0.25mm i.d. x 30m, df;0.25µm


Oven Temp. 100° (2min)- 10° (/min-220 $^{\circ}$ C-30 $^{\circ}$ C/min-320 $^{\circ}$ C(4.7min)

Trans. Line Temp. 290℃

MS

MS Method SCAN, m/z;70-470

マウス血清のSCANトータルイオンクロマトグラム

- ① Lactic acid-2TMS
- ② Alanine-2TMS
- ③ Valine-2TMS
- 4 Leucine-2TMS
- ⑤ Phosphoric acid-3TMS
- **6** Isoleucine-2TMS
- ⑦ Proline-2TMS
- Succinic acid-2TMS
- ① Glyceric acid-3TMS
- ① Serine-3TMS
- 12 Threonine-3TMS
- ⁽¹³⁾ Malic acid-3TMS
- Aspartic acid-3TMS
- 15 Pyroglutamic acid-2TMS
- (16) Glutamic acid-3TMS
- 17) Phenylalanine-2TMS
- Ornithine-4TMS
- Oitric acid-4TMS
- ② Lysine-4TMS

- ② Tyrosine-3TMS
- ② Gluconic acid-6TMS

No.	成分名	U1	U2	U3	U4	U5	Ave.	RSD,%
1	Lactic acid-2TMS	14,649,682	15,089,600	13,841,394	15,639,698	14,808,578	14,805,790	4.4
2	Alanine-2TMS	5,118,252	4,719,988	4,790,287	5,126,762	5,101,869	4,971,432	4.0
6	Valine-2TMS	2,261,504	2,125,119	2,152,889	2,285,552	2,299,904	2,224,994	3.6
9	Leucine-2TMS	4,005,604	3,817,067	3,780,734	4,039,212	4,059,866	3,940,497	3.3
10	Isoleucine-2TMS	971,384	928,534	931,475	980,243	981,767	958,681	2.8
11	Proline-2TMS	3,078,401	2,818,958	2,910,867	3,100,657	3,131,659	3,008,108	4.5
12	Glycine-3TMS	3,243,322	2,973,200	3,083,005	3,312,366	3,351,687	3,192,716	5.0
14	Succinic acid-2TMS	609,722	610,940	585,493	627,168	603,713	607,407	2.5
15	Fumaric acid-2TMS	11,626	11,149	10,691	11,947	12,254	11,533	5.4
16	Serine-3TMS	1,466,003	1,327,848	1,366,049	1,533,536	1,562,951	1,451,277	7.1
17	Threonine-3TMS	497,778	441,900	461,299	506,740	513,163	484,176	6.4
18	Malic acid-3TMS	19,076	18,062	17,173	18,728	18,470	18,302	4.0
20	Aspartic acid-3TMS	745,837	821,214	711,854	825,260	818,549	784,543	6.7
21	Methionine-2TMS	71,255	66,983	76,059	92,889	80,950	77,627	12.9
22	4-Hydroxyproline-3TMS	54,583	47,943	51,238	58,569	61,333	54,733	9.9
23	GABA-3TMS	10,265	8,742	9,675	10,265	10,430	9,875	7.0
25	Threonic acid-4TMS	28,177	28,501	22,545	29,638	26,765	27,125	10.2
27	Glutamic acid-3TMS	3,365,311	3,486,693	3,156,198	3,603,886	3,575,843	3,437,586	5.3
28	Phenylalanine-2TMS	682,545	669,938	666,324	718,207	715,692	690,541	3.6
31	Putrescine-4TMS	9,970	9,716	9,256	8,922	9,694	9,512	4.4
33	Citric acid-4TMS	212,800	218,960	209,116	224,337	216,971	216,437	2.7
36	Lysine-4TMS	926,298	906,996	922,350	974,013	971,295	940,190	3.2
37	Histidine-3TMS	10,802	9,595	9,636	10,237	11,959	10,446	9.4
38	Tyrosine-3TMS	1,192,371	1,093,010	1,123,091	1,241,557	1,225,141	1,175,034	5.5
41	Tryptophan-3TMS	29,187	29,591	28,393	29,027	29,282	29,096	1.5
43	Cystine-4TMS	15,113	14,209	13,349	15,634	15,333	14,728	6.4

ほうれん草 調理の成分量比較

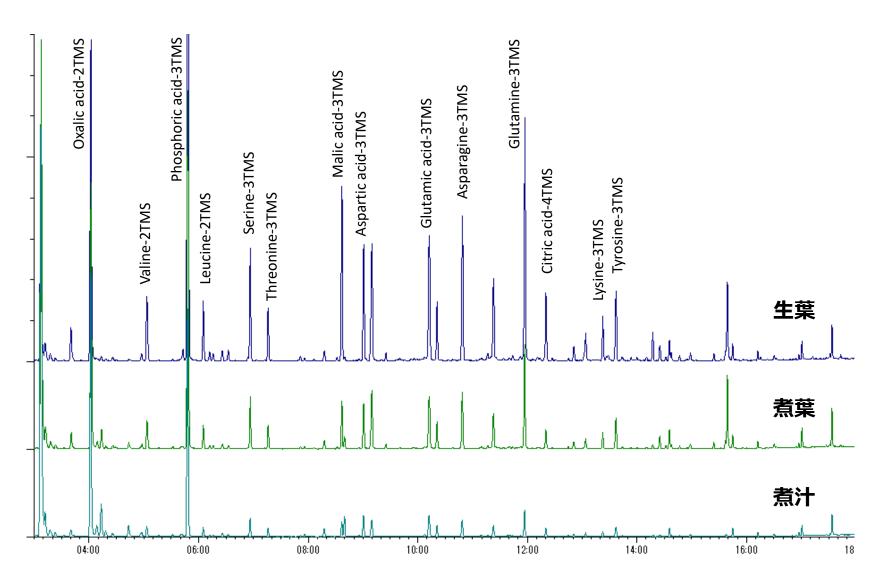
- 調理
- **生**
- > 煮た葉
- > 煮汁
- 対象成分
- ◆ アミノ酸/有機酸/等

ほうれん草

ホウレンソウにはシュウ酸が多く含まれており、体内でカルシウムと結合し腎臓や尿路にシュウ酸カルシウムの結石を引き起こすことがある。また、シュウ酸は水溶性であるため、多量の水で茹でこぼすことでシュウ酸を茹で汁中に溶出させるなど、生食を避け調理法を工夫する事が要される。(wikiPedia)

煮た葉

ほうれん草 100 g を大きく3分画に切り、水100mLを加え沸騰してから3分程煮た。その煮た葉+煮汁の100 gを試料とした。


煮汁

上記の煮た葉を取り出した後の煮汁を 試料とした。

NCE (#)

45

調理による成分量:SCANクロマトグラム比較

45

ほうれん草-生:再現性

No.	成分名	U1	U2	U3	U4	U5	U6	Ave.	RSD.,%
2	Alanine-2TMS	2,705,765	2,625,243	2,661,635	2,613,090	2,563,111	2,522,121	2,615,161	2.5
3	Oxalic acid-2TMS	21,958,314	21,851,090	21,894,348	22,511,436	21,642,163	21,152,779	21,835,022	2.0
5	Malonic acid-2TMS	548,802	512,489	526,249	519,043	526,234	560,334	532,192	<i>3.5</i>
6	Valine-2TMS	4,606,428	4,497,232	4,519,964	4,488,579	4,370,621	4,330,268	4,468,849	2.3
8	Leucine-2TMS	3,949,838	3,823,120	3,869,338	3,815,906	3,775,518	3,506,105	3,789,971	4.0
9	Isoleucine-2TMS	3,815,850	3,746,055	3,773,535	3,748,879	3,647,235	3,642,443	3,729,000	1.9
10	Proline-2TMS	722,955	701,361	703,837	693,309	677,892	656,913	692,711	3.3
11	Glycine-3TMS	311,795	300,133	304,260	291,269	293,179	271,290	295,321	4.7
13	Succinic acid-2TMS	686,713	683,285	686,428	692,873	682,757	675,948	684,667	0.8
14	Fumaric acid-2TMS	142,760	142,743	148,768	147,353	140,625	139,958	143,701	2.5
15	Serine-3TMS	3,965,989	3,691,721	3,774,761	3,724,560	3,590,127	3,663,876	3,735,172	3.4
16	Threonine-3TMS	602,931	560,277	568,682	558,021	542,283	550,970	<i>563,861</i>	3.7
17	Malic acid-3TMS	1,584,318	1,575,211	1,591,829	1,609,113	1,555,666	1,566,658	<i>1,580,466</i>	1.2
19	Aspartic acid-3TMS	4,528,602	4,434,587	4,423,349	4,546,915	4,327,986	4,393,956	4,442,566	1.9
20	Methionine-2TMS	53,844	57,581	57,174	46,740	55,391	50,128	53,476	8.0
22	GABA-3TMS	442,631	435,615	443,665	423,246	417,886	397,142	426,698	4.2
24	Threonic acid-4TMS	111,636	103,963	109,708	112,379	106,450	117,600	<i>110,289</i>	4.3
25	Ketoglutaric acid-MO-2TMS	4,372	4,620	5,300	5,080	4,489	4,590	4,742	7.7
26	Glutamic acid-3TMS	4,609,844	4,600,117	4,559,014	4,622,500	4,452,911	4,616,932	4,576,886	1.4
27	Phenylalanine-2TMS	1,525,816	1,487,573	1,505,821	1,508,921	1,441,017	1,419,540	1,481,448	2.8
29	Asparagine-3TMS	1,993,942	1,800,771	1,838,868	1,826,318	1,806,007	1,968,777	1,872,447	4.6
30	Putrescine-4TMS	100,127	90,218	92,879	94,574	87,116	79,290	90,701	7.8
31	Shikimic acid-4TMS	23,913	20,946	22,909	22,988	21,733	20,749	22,206	<i>5.7</i>
32	Citric acid-4TMS	480,734	471,479	470,472	476,376	461,721	453,838	469,103	2.1
34	Adenine-2TMS	32,888	28,552	26,642	27,283	25,239	24,364	27,495	11.0
35	Lysine-4TMS	1,086,746	1,036,401	1,065,106	1,021,094	1,015,699	926,104	1,025,192	5.4
36	Histidine-3TMS	309,715	305,531	314,436	317,818	296,923	287,021	<i>305,241</i>	3.8
37	Tyrosine-3TMS	3,660,407	3,522,793	3,549,047	3,567,762	3,463,739	3,332,989	3,516,123	3.1
40	Tryptophan-3TMS	138,662	133,594	136,100	134,166	131,844	134,228	<i>134,766</i>	1.7
43	Adenosine-4TMS	54,504	52,592	57,398	54,370	52,774	51,431	53,845	3.9

調理による成分量比較

固相誘導体化法による短鎖脂肪酸と有機酸の 一斉分析法の開発

○佐々野僚一1、杉立久仁代2、野原健太2、古野正浩3、福﨑英一郎3

(1アイスティサイエンス,2アジレント・テクノロジー,3阪大院・工)

Beyond your Imagination

短鎖脂肪酸について

従来のメタボローム分析において、短鎖脂肪酸は、凍結乾燥/遠心乾固の工程における気化損失が懸念されるため、通常のメタボローム解析と同じ手法での前処理が難しく、塩酸酸性下でのジエチルエーテル抽出などの手法が取られることが多い。そこで、本研究では凍結乾燥工程を必要としない自動固相誘導体化オンラインSPE/GC/MSシステムを用いて、MTBSTFA誘導体化試薬による短鎖脂肪酸と有機酸の一斉分析のメソッド開発を行った。

固相誘導体化法

STEP 5

試料負荷&保持

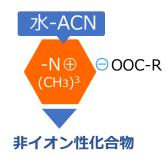
短鎖脂肪酸と有機酸を イオン交換相互作用により固相に保持

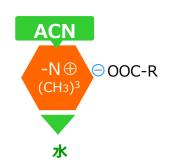
洗净

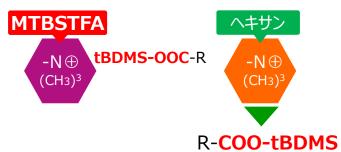
水-ACNで固相に残存 している非イオン性化合 物を除去

脱水/1分

ACNで固相に残存 している水分を除去

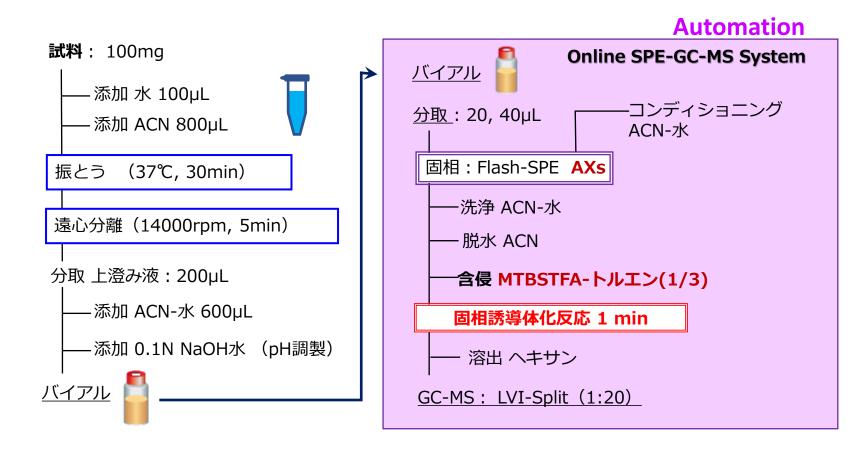

誘導体化/1分


誘導体化試薬を固相 に含侵させて、目的成 分を固相中で誘導体 化


溶出

誘導体化物をヘキサン で溶出

試料 -N⊕ (CH3)3 カルボキシル基 →OOC-R



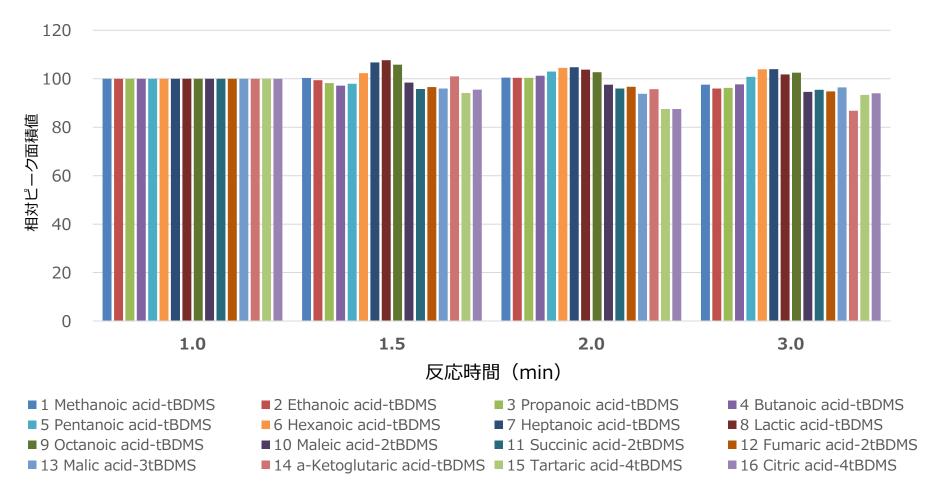
前処理フロー

MTBSTFA誘導体化

■ MTBSTFAによるt-BDMS誘導体化

R-COOH
$$+$$
 F_3C N $Si-t$ -Bu \rightarrow R-COC $Si-t$ -Bu libited MTBSTFA t -BDMS化

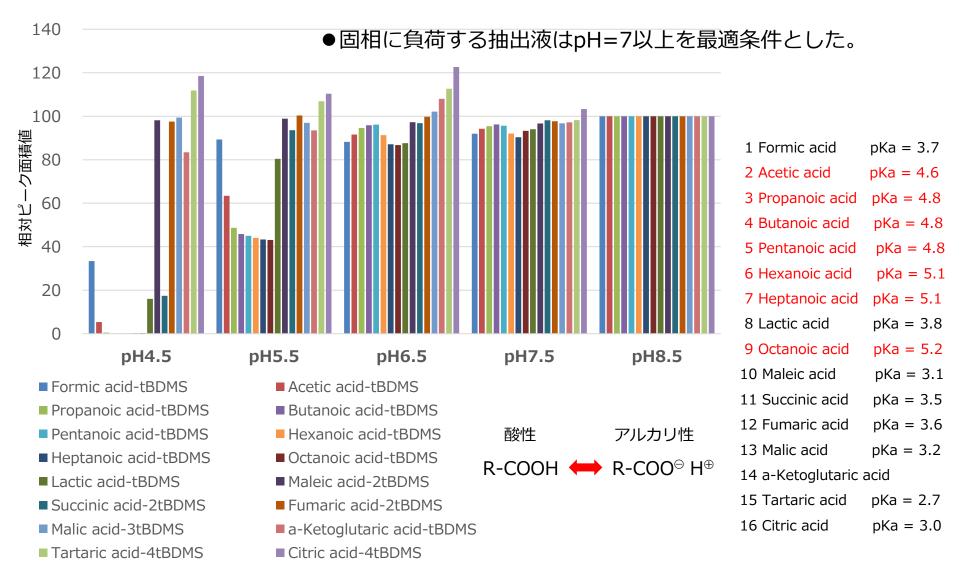
TMS 誘導体は加水分解されやすいのに対し, t-BDMS 誘導体は加水分解に対し非常に安定。


■ 固相抽出技術

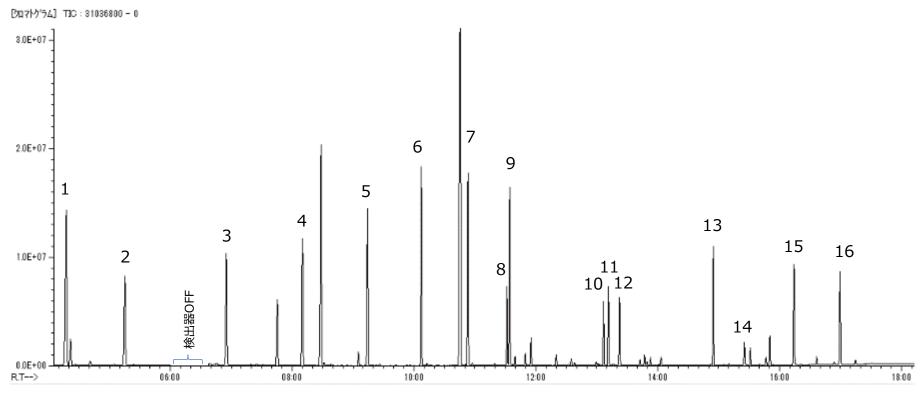
脱水:強イオン性固相に短鎖脂肪酸を吸着させてアセトニトリルを 通液することで固相に残存している水分を取り除く。

固相誘導体化:強イオン性固相に短鎖脂肪酸を吸着させてた状態 で誘導体化試薬をその固相に含浸させて、誘導体化。

誘導体化反応時間



●MTBSTFAと短鎖脂肪酸の固相誘導体化法は、直ぐに反応することがわかった。


45

抽出液のpH調製について

本法によるスタンダードのSCANトータルイオンクロマトグラム

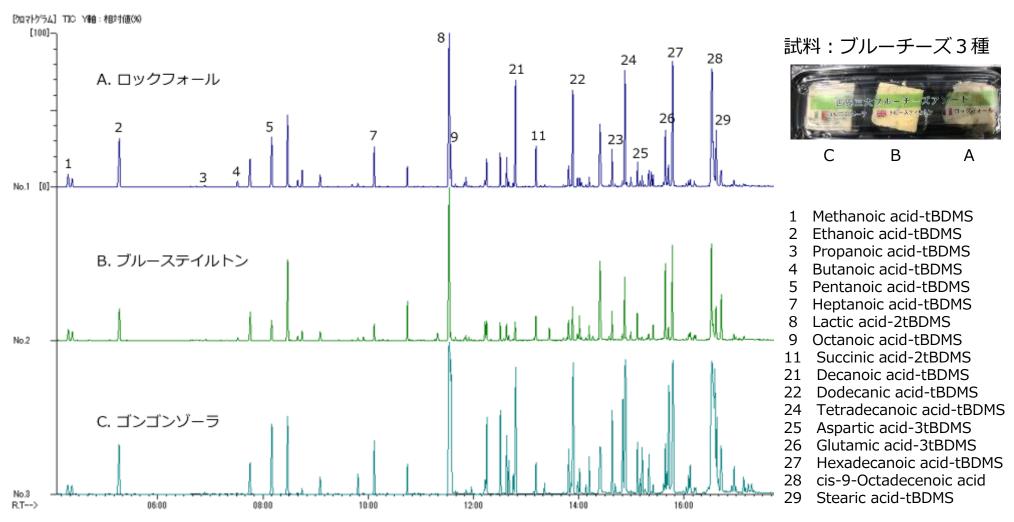
有機酸系(短鎖脂肪酸、ジカルボン酸類)誘導体化試薬:MTBSTFA

- 1. Methanoic acid-tBDMS
- 2. Ethanoic acid-tBDMS
- 3. Propanoic acid-tBDMS
- 4. Butanoic acid-tBDMS
- 5. Pentanoic acid-tBDMS
- 6. Hexanoic acid-tBDMS

- 7. Heptanoic acid-tBDMS
- 8. Lactic acid-2tBDMS
- 9. Octanoic acid-tBDMS
- 10. Maleic acid-2tBDMS
- 11. Succinic acid-2tBDMS
- 12. Fumaric acid-2tBDMS

- 13. Malic acid-3tBDMS
- 14. a-Ketoglutaric acid-3tBDMS
- 15. Tartaric acid-4tBDMS
- 16. Citric acid-4tBDMS

再現性

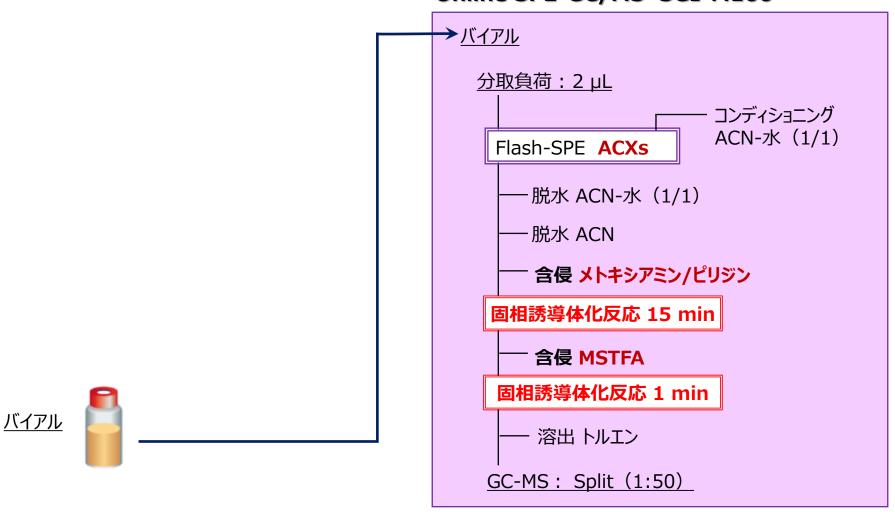

Table 1. 本法の繰り返し測定によるスタンダードのピーク面積値の再現性(n = 10)

No.	化合物名	1	2	3	4	5	6	7	8	9	10	Ave.	RSD, %
1	Methanoic acid-tBDMS	30,227,430	30,889,896	30,429,839	30,948,441	31,244,577	31,557,736	32,493,298	32,124,585	32,670,291	31,126,554	31,371,265	2.7
2	Ethanoic acid-tBDMS	12,340,883	12,538,808	12,137,282	12,298,944	12,381,311	12,578,273	13,094,081	12,862,755	12,800,785	12,135,503	12,516,863	2.6
3	Propanoic acid-tBDMS	12,823,811	12,909,258	12,779,143	12,845,278	13,087,033	13,015,973	13,636,656	13,327,889	13,578,399	12,345,834	13,034,927	3.0
4	Butanoic acid-tBDMS	11,475,299	11,581,978	11,808,966	11,688,344	11,946,609	12,009,882	12,394,007	11,964,797	12,362,085	11,127,740	11,835,971	3.3
5	Pentanoic acid-tBDMS	11,588,243	11,720,223	12,243,830	11,920,575	12,135,019	12,354,232	12,670,558	12,084,388	12,720,821	11,576,139	12,101,403	3.4
6	Hexanoic acid-tBDMS	11,580,646	11,842,742	12,353,900	11,988,066	12,169,039	12,387,848	12,572,832	12,065,398	12,647,753	11,874,440	12,148,266	2.8
7	Heptanoic acid-tBDMS	11,606,883	11,805,299	12,464,553	12,009,352	12,146,574	12,496,200	12,573,604	11,959,907	12,691,060	12,106,993	12,186,043	2.9
8	Lactic acid-2tBDMS	1,077,185	1,230,088	1,131,334	1,076,805	1,162,595	1,154,103	1,154,143	1,145,913	1,187,630	1,112,992	1,143,279	4.1
9	Octanoic acid-tBDMS	10,608,992	10,881,088	11,527,448	11,111,574	11,200,905	11,651,375	11,407,126	10,950,090	11,613,534	11,248,975	11,220,111	3.0
10	Maleic acid-2tBDMS	1,867,779	1,969,324	2,040,317	1,900,232	2,065,959	2,002,221	1,949,168	1,898,625	2,022,759	2,113,877	1,983,026	4.0
11	Succinic acid-2tBDMS	2,406,066	2,438,793	2,495,130	2,401,336	2,499,333	2,510,922	2,491,212	2,377,200	2,506,791	2,573,343	2,470,013	2.5
12	Fumaric acid-2tBDMS	4,193,048	4,331,927	4,480,305	4,218,660	4,487,927	4,390,857	4,285,980	4,205,144	4,422,052	4,579,983	4,359,588	3.1
13	Malic acid-3tBDMS	1,570,355	1,544,780	1,523,746	1,576,209	1,573,185	1,590,439	1,612,939	1,578,652	1,571,389	1,623,141	1,576,484	1.8
14	a-Ketoglutaric acid-3tBDMS	553,488	530,143	534,318	509,953	582,938	521,569	534,178	552,656	537,514	609,245	546,600	5.4
15	Tartaric acid-4tBDMS	563,021	521,446	497,159	546,241	530,917	526,143	540,008	583,506	526,641	580,916	541,600	5.1
16	Citric acid-4tBDMS	924,916	849,805	796,506	911,965	892,992	862,443	834,170	973,466	842,453	1,025,026	891,374	7.8

ブルーチーズ3種のSCANトータルイオンクロマトグラム比較

有機酸系(短鎖脂肪酸、ジカルボン酸類)誘導体化試薬:MTBSTFA

再現性


Table 2. 本法の繰り返し測定によるブルーチーズAのピーク面積値の再現性(n = 10)

No.	化合物名	1	2	3	4	5	6	7	8	9	10	Ave.	RSD, %
1	Methanoic acid-tBDMS	5,662,335	6,087,241	6,025,118	5,973,966	6,068,586	5,802,239	6,134,522	6,101,179	5,798,742	5,777,380	5,943,131	2.8
2	Ethanoic acid-tBDMS	18,770,224	20,146,848	19,677,295	20,067,483	20,422,968	19,469,683	21,313,154	20,143,063	20,431,335	20,147,390	20,058,944	3.3
3	Propanoic acid-tBDMS	524,184	593,124	554,110	579,284	587,008	547,840	600,395	572,069	579,179	576,679	<i>571,387</i>	4.0
4	Butanoic acid-tBDMS	13,001,525	14,053,261	13,282,154	14,064,781	14,082,758	13,297,350	14,175,957	13,582,032	13,870,275	13,807,788	13,721,788	3.0
5	Pentanoic acid-tBDMS	85,540	90,561	86,590	92,154	94,205	86,636	90,475	88,603	88,350	88,237	89,135	3.0
6	Hexanoic acid-tBDMS	885,558	909,180	860,093	962,674	948,573	900,324	908,790	901,709	906,454	902,439	908,579	3.2
7	Heptanoic acid-tBDMS	108,089	106,675	100,268	116,243	111,757	107,815	107,017	108,204	106,638	107,850	108,056	3.7
8	Lactic acid-2tBDMS	2,937,700	2,896,698	2,933,690	3,024,671	3,004,121	3,016,702	3,054,493	2,995,071	3,028,298	2,984,398	2,987,584	1.7
9	Octanoic acid-tBDMS	7,698,998	7,401,664	7,429,620	8,050,950	7,874,511	7,738,806	7,568,072	7,785,579	7,625,665	7,743,874	7,691,774	2.6
10	Maleic acid-2tBDMS	_	_	_	_	_	_	_	_	_	_	_	_
11	Succinic acid-2tBDMS	930,429	907,160	953,785	962,154	959,702	976,303	951,261	990,590	989,084	993,676	961,414	2.9
12	Fumaric acid-2tBDMS	97,015	95,707	107,631	99,765	108,764	114,054	109,247	116,137	106,451	101,762	105,653	6.5
13	Malic acid-3tBDMS	168,152	158,283	162,771	167,983	158,269	167,363	170,771	181,388	176,893	177,783	168,966	4.7
14	a-Ketoglutaric acid-3tBDMS	63,206	55,231	60,496	63,380	59,289	61,575	59,891	64,924	70,249	65,135	62,338	6.5
15	Tartaric acid-4tBDMS	_	_	_	_	_	_	_	_	_	_	_	_
16	Citric acid-4tBDMS	20,400	16,533	19,185	20,289	18,807	19,405	18,888	20,926	20,037	18,756	19,323	6.4

前処理フロー(糖類)

Online SPE-GC/MS SGI-M100

バイアル瓶をセットするだけ!

測定条件

SPE-GC Interface SGI-M100 (AiSTI Science)

SPE Cartridge Flash-SPE ACX

PTV Injector LVI-S250 (AiSTI Science)

Insert Type Spiral Insert

Injector Temp. 220° C(0.5min)- 100° C/min- 290° C

GC TQ8030

Inlet Mode Splite Splite Rate 1:50

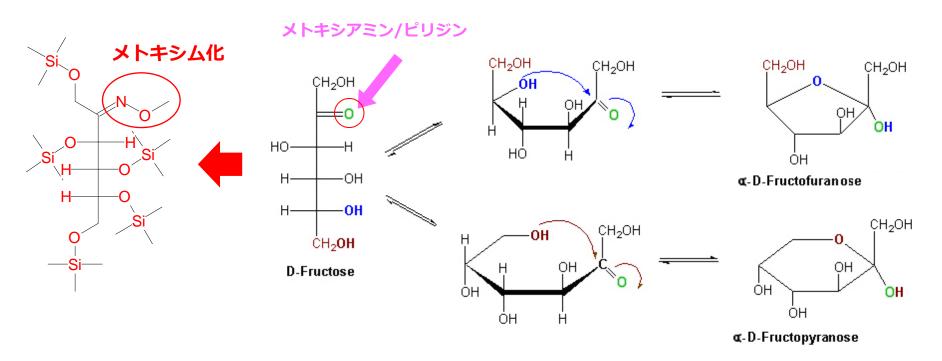
Flow Mode Constant Flow, 1 ml/min

Pre-Column 0.25mm i.d. x 0.5m

Column Vf-5ms, 0.25mm i.d. x 30m, df;0.25µm

Oven Temp. 100° C(2min)-15 $^{\circ}$ C/min-200 $^{\circ}$ C-20 $^{\circ}$ C/min-310 $^{\circ}$ C

Trans. Line Temp. 290℃


MS TQ8040

MS Method SCAN, m/z;70-470

糖類のメトキシム化

Isomeric Forms of Fructose

https://ja.wikipedia.org/wiki

メトキシアミンによる誘導体化反応時間

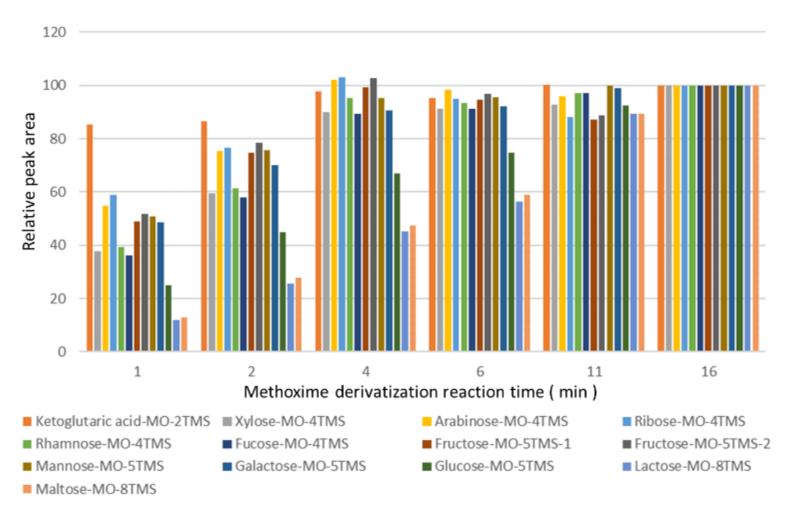
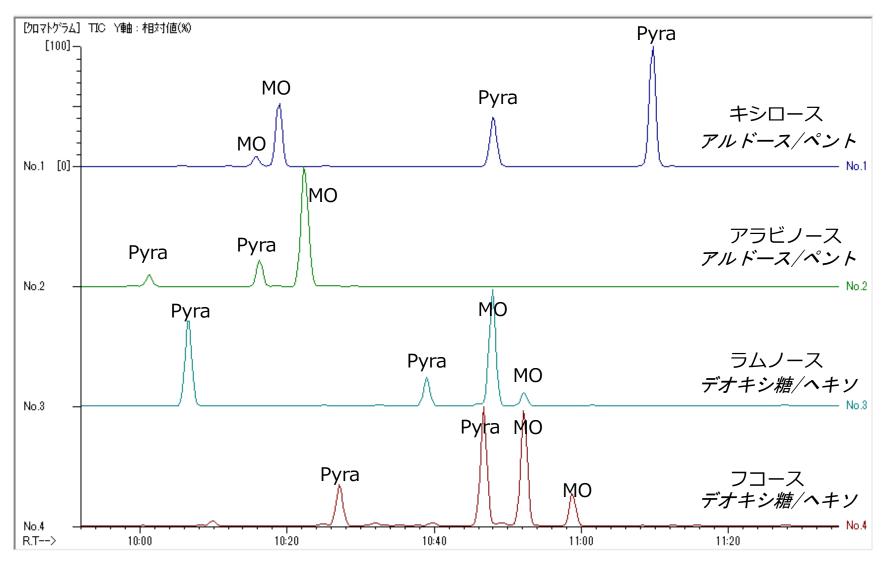
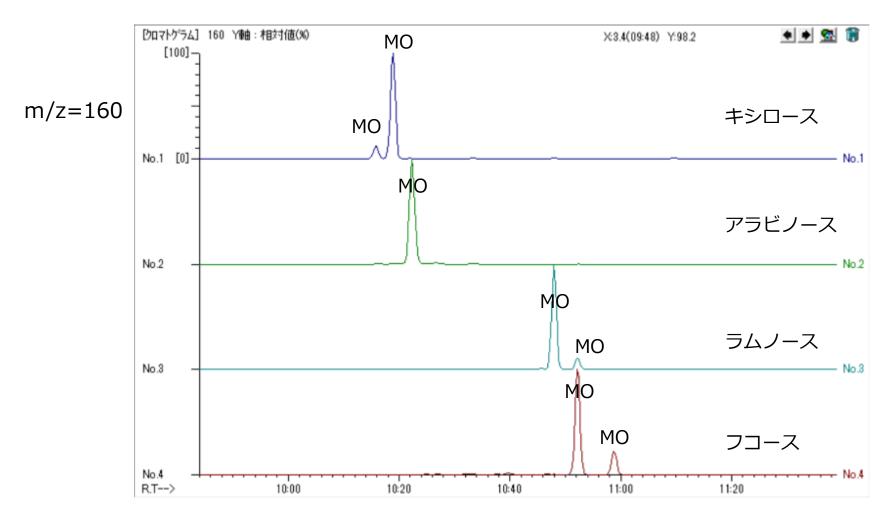


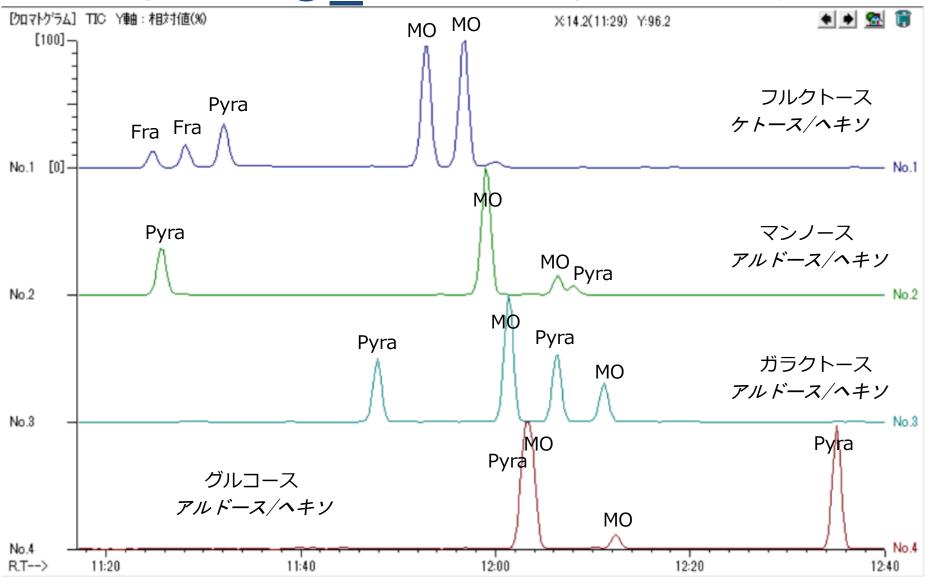

Fig. 3. Relations of methoxyame derivatization reaction time in sorbent and the relative peak area


糖類のSCANトータルイオンクロマトグラム

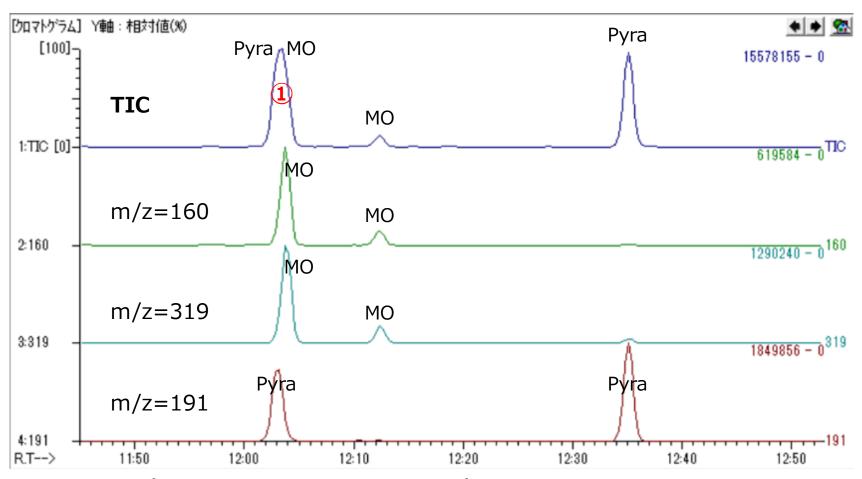
単糖並列①_TICクロマトグラム



AISTI SCIENCE

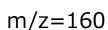

単糖並列①_定量イオンクロマトグラム

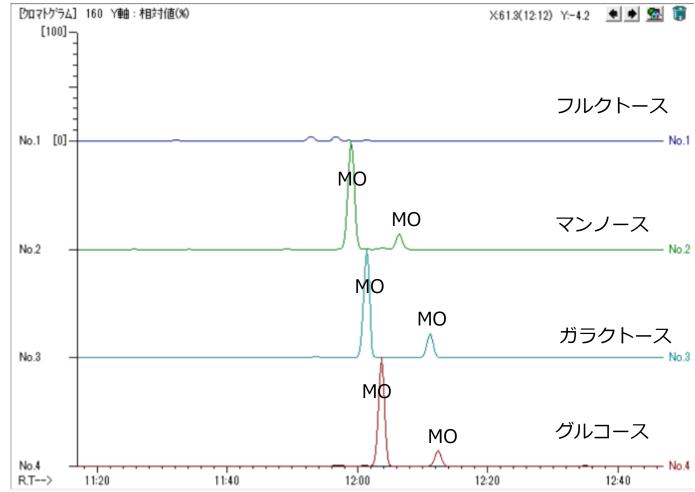
メトキシム化(MO)ピークはの場合は「160」を確認イオンとする。



AISTI SCIENCE

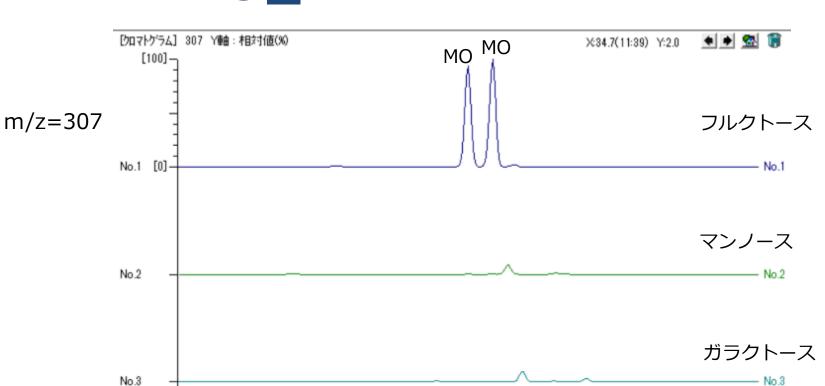
グリコース_定量イオン並列クロマトグラム





TICのピーク①はPyranoseとMOのピークが重なっていおり、定量イオンで分ける必要がある。

MOの場合は「319」とし、Pyranoseは「191」を定量イオンとする。



マンノース、ガラクトース、グルコースのメトキシム化(MO)ピークはの場合は「160」を確認イオンとする。

単糖並列②_定量イオンクロマトグラム

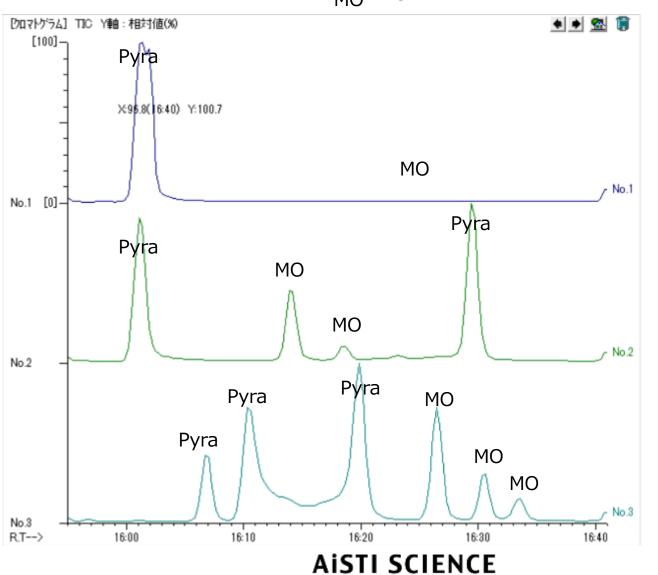
11:40

No.4 R.T-->

11:20

フルクトースのメトキシム化(MO)ピークはの場合は「307」を定量イオンとする。

12:00

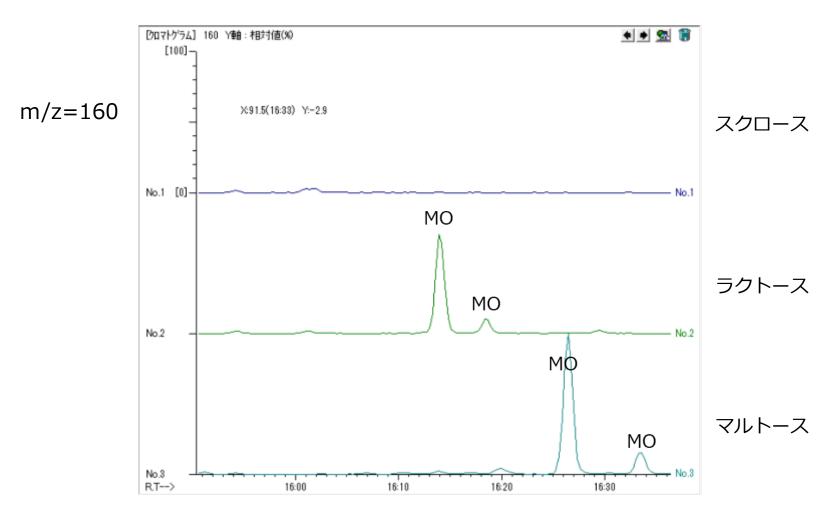

グルコース

12:20

A SUPERAL STATE OF THE SECOND STATE OF THE SEC

二糖並列_TICクロマトグラム

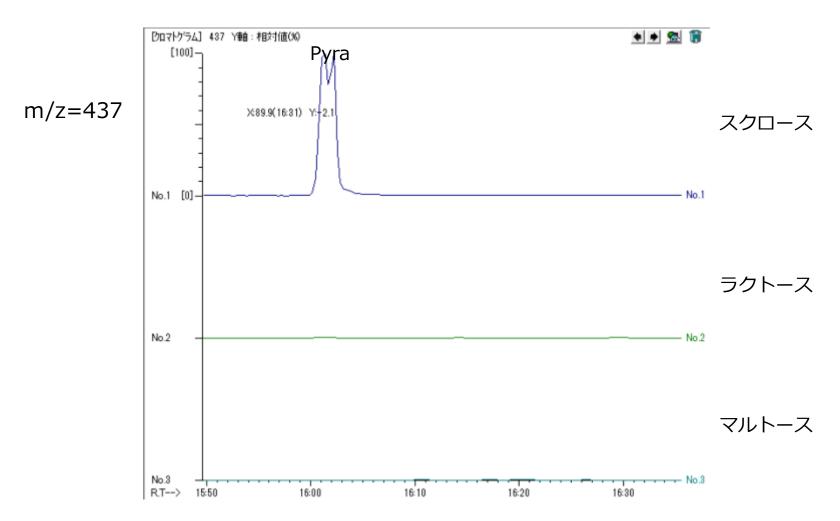
フルクトース ケ*トース/*ヘキソ


マンノース *アルドース/*ヘキソ

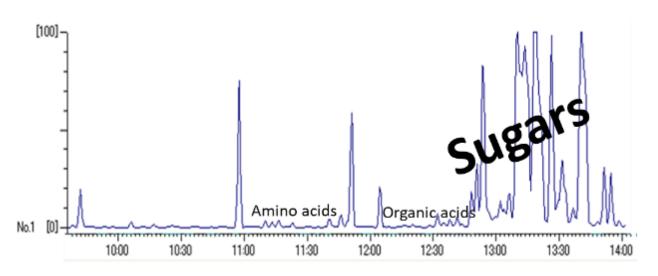
ガラクトース *アルドース/ヘキソ*

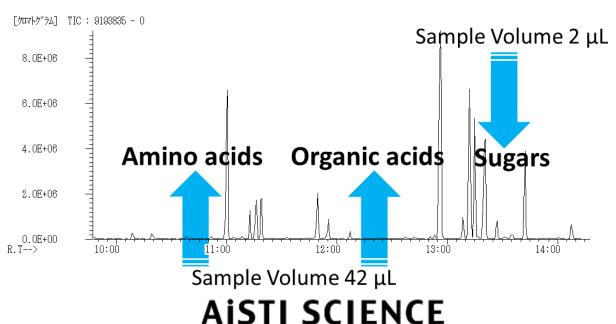
Pyra

二糖並列_定量イオンクロマトグラム



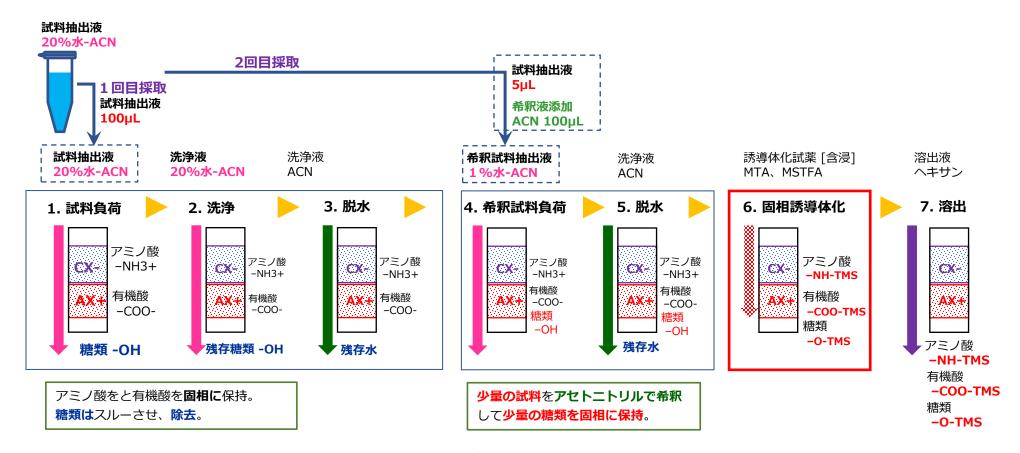
ラクトースとマルトースのメトキシム化(MO)ピークはの場合は「160」を確認イオンとする。


二糖並列_定量イオンクロマトグラム

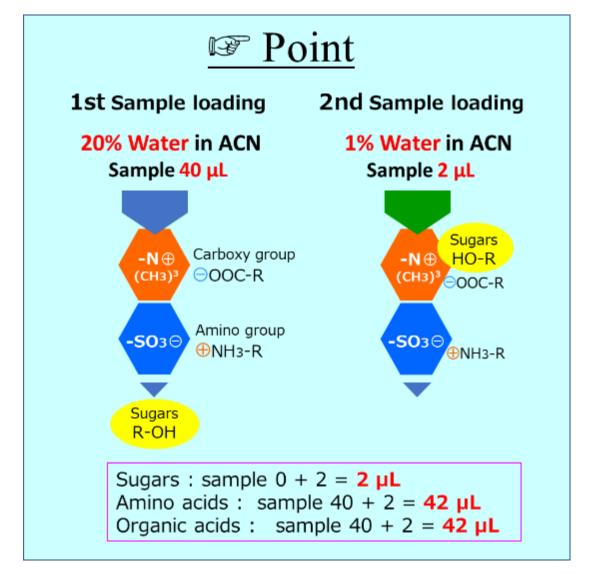


スクロースのピークはの場合は「437」を確認イオンとする。

糖類を多く含む試料の分析の課題と対策



45


2段階試料分取法:構想

第1回目の試料負荷では糖類は固相に保持させず、アミノ酸と有機酸を固相に保持させておき、第2回目の試料負荷では先の試料量の1/20以下にして先の固相に糖類を保持させ、アセトニトリルで洗浄することで脱水を行い、アミノ酸と有機酸と糖質が固相に保持された状態で誘導体化試薬を固相に添加含浸させて誘導体化し、その後、一斉にヘキサンで溶出した。

ポイント

混合標準溶液によるトータルイオンクロマトグラム

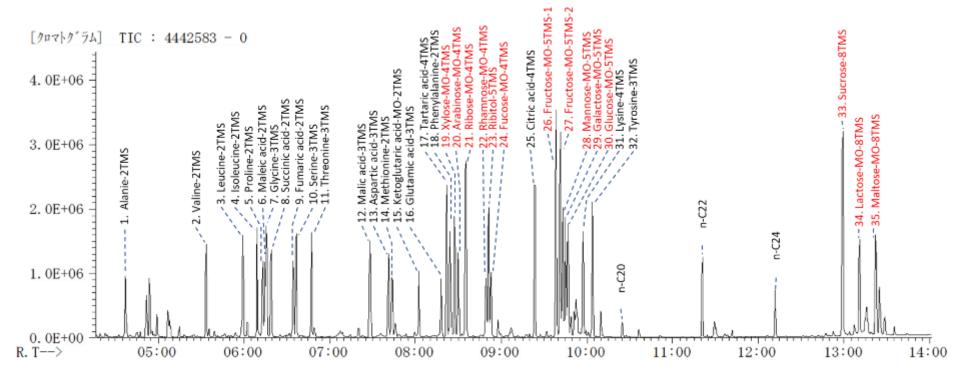


Fig. 2. The SCAN total ion chromatogram of standard solution using SPE-GC-MS system with automated solid-phase derivatization method

- * Concentration of amino acids and organic acids standard solution is 0.02nmol/μL
- * Concentration of sugars standard solution is 0.2nmoL/μL

野菜ジュースのトータルイオンクロマトグラム

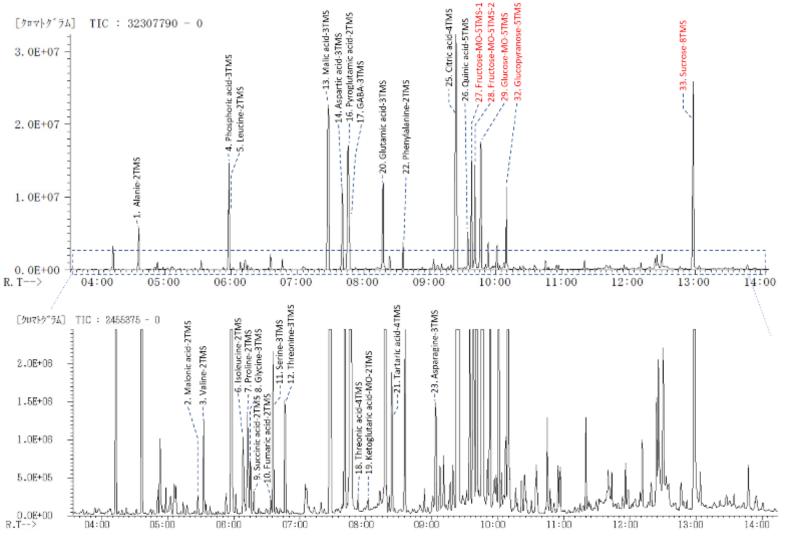
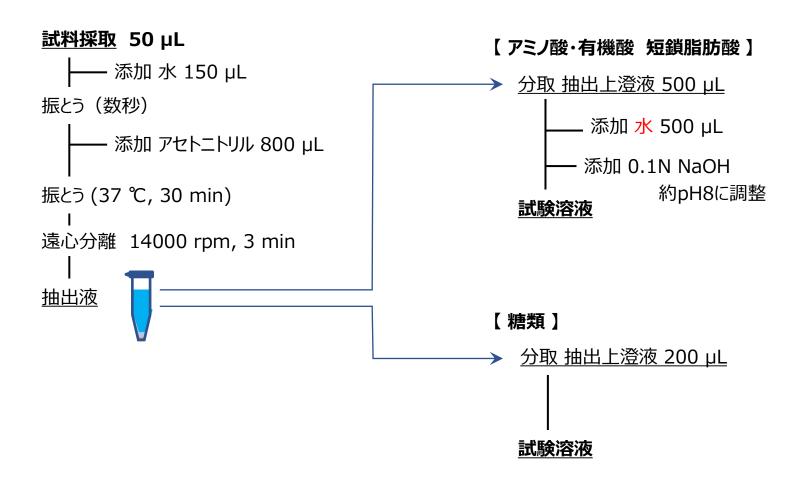
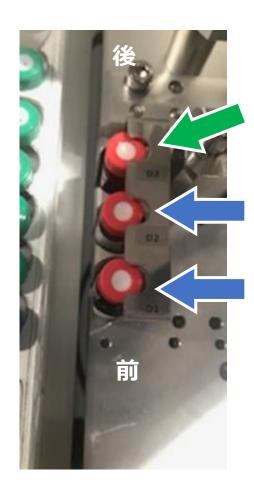



Fig. 4. The SCAN total ion chromatogram of the Vegetable juice using SPE-GC-MS system with automated solid-phase derivatization method

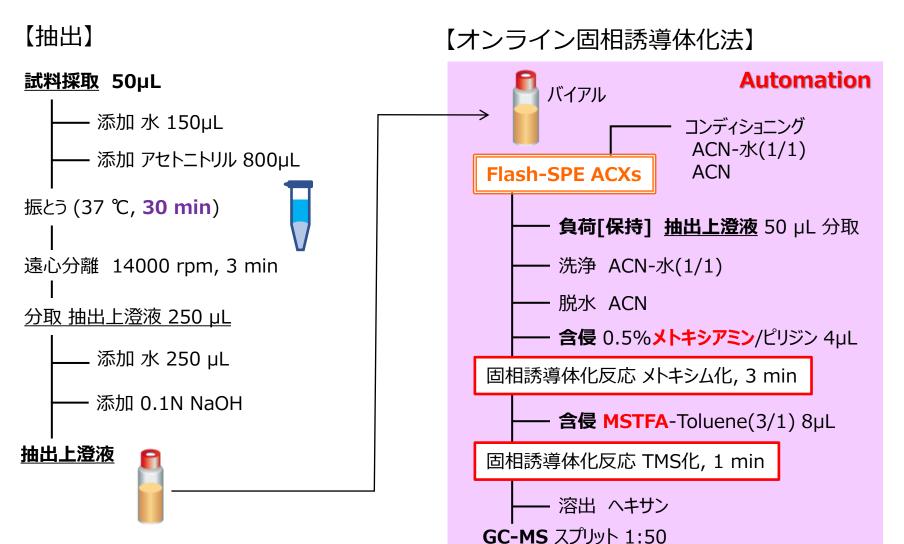

45

抽出:血清

誘導体化試薬の設置位置

MTBSTFA-トルエン(**1/3**) D3:

15%メトキシアミン/ピリジン


D2: **0.5%メトキシアミン**/ピリジン

D1: MSTFA-トルエン (3/1)

	アミノ酸 有機酸	糖類	短鎖 脂肪酸
D3-B MTBSTFA			0
D3-A 15% ኦ <u></u> ト‡ን		0	
D2 0.5% ኦኑ‡ን	0		
D1 MSTFA	0	0	

前処理条件:アミノ酸・有機酸(マウス血清)

測定条件

SPE-GC Interface SGI-M100 (AiSTI Science)

SPE Cartridge Flash-ACX

Sampling Volume 50 μL

PTV Injector LVI-S250 (AiSTI Science)

Insert Type Spiral Insert

Injector Temp. 220° C(0.5min)- 50° C/min- 290° C(16min)

GC

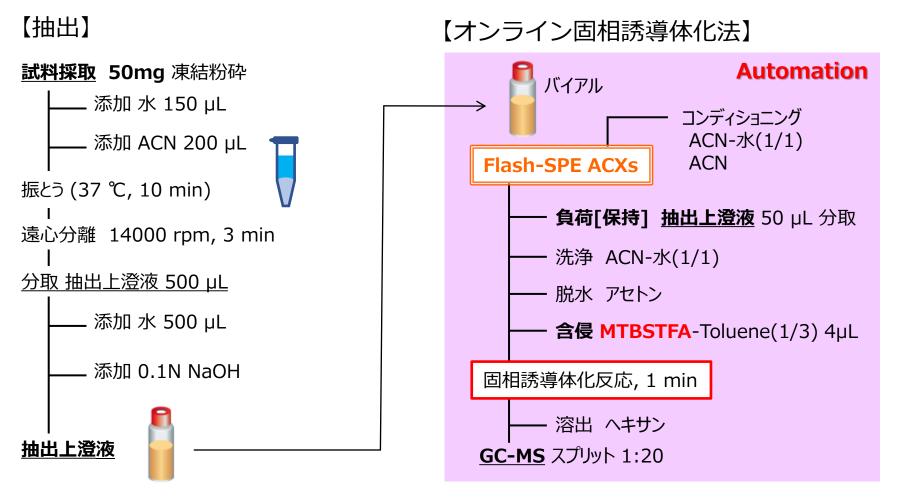
Inlet Mode Split 1:50

Flow Mode Constant Flow, 1 ml/min

Pre-Column 0.25mm i.d. x 1m

Column Vf-5ms, 0.25mm i.d. x 30m, df; 0.25µm

Oven Temp. 100° (2min)- 10° (/min-220 $^{\circ}$ C-30 $^{\circ}$ C/min-320 $^{\circ}$ C(4.7min)


Trans. Line Temp. 290℃

MS

MS Method SCAN, m/z;70-470

前処理条件:短鎖脂肪酸

測定条件

SPE-GC Interface SGI-M100 (AiSTI Science)

SPE Cartridge Flash-ACX

Sampling Volume 50 μL

PTV Injector LVI-S250 (AiSTI Science)

Insert Type Spiral Insert

Injector Temp. 150° C(0.5min)-25 $^{\circ}$ C/min-290 $^{\circ}$ C(16min)

GC

Inlet Mode Split 1:20

Flow Mode Constant Flow, 1 ml/min

Pre-Column 0.25mm i.d. x 1m

Column Vf-5ms, 0.25mm i.d. x 30m, df; 0.25µm

Oven Temp. 60° C(3min)- 10° C/min- 100° C- 20° C/min- 310° C(4min)

Trans. Line Temp. 290℃

MS

MS Method SCAN, m/z;70-470