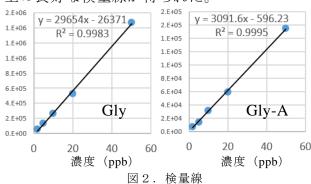
食品中のグリホサート及びグルホシネートの分析法の開発

○佐々野 僚一^{1) 2)}、小西 賢治²⁾、渡辺 淳³⁾、伊藤 里恵¹⁾、穐山 浩¹⁾ ¹⁾星薬科大学薬学部、²⁾(株)アイスティサイエンス、³⁾(株)島津製作所

【目的】北米等でグリホサート(Gly)及びグルホシネート(Glu)の除草剤の耐性遺伝子組換え作物の作付面積が拡大している。それに伴い食品中にGlyあるいはGluのみならず代謝物も残存することから、代謝物を含めた規制対象物質に変更になっている。そのため、親化合物と代謝物を含めた分析法が求められている。これらの物質は高極性であり同時分析は課題が多かった。本研究では、食品中のGlyおよびGluとそれらの代謝物である3-メチルホスフィニコプロピオン酸(MPPA)、N-アセチルグリホサート(Gly-A)、N-アセチルグリホサート(Gly-A)、N-アセチルグルホシネート(Glu-A)を含めた簡易な一斉分析法の開発することを目的とした。


【方法】前処理フローを下図に示す。

自動前処理装置:ST-L400 (アイスティサイエンス社製) LC-MS/MS: NexeraX2-LCMS-8045 (島津製作所社製) カラムはTSKgel SuperIC-AP (4.6 mm i.d. x 75 mm) を用いて、

移動相はA液0.1% ギ酸を含むアセトニトリル、B液1% ギ酸水溶液でグラジエント溶出し、流速は0.8 mL/min、イオン化はESI(+)あるいは(-)モードにより測定した。

【結果と考察】測定条件の検討: Gly-Aの溶出が遅く、ピークの半値幅も広がり感度不足が懸念されたが、移動相のギ酸濃度および注入量を増加することで改善した。図2のように絶対検量線法において相関係数0.998以上の良好な検量線が得られた。

添加回収試験:大豆および玄麦を用いて添加 回収試験を行った。その結果を表1に示す。

表 1. 添加回収試験

サンプル		Gly	Gly-A	Glu	MPPA	Glu-A
		添加濃度: 1 ppm		添加濃度: 0.2 ppm		
		Pos.	Neg.	Pos.	Neg.	Pos.
大豆 2g RSD(n=5), %		4.0	7.4	<i>5.1</i>	7.4	4.8
回収率, %	溶媒STD	115	103	106	96	293
	マトリックスSTC	109	99	97	117	114
玄麦 2g RSD(n=5), %		4.4	2.8	5.4	8.0	5.2
回収率,%	溶媒STD	94	89	85	91	127
	マトリックスSTC	88	89	79	92	123

全ての分析対象物質において併行精度 8.0%以下の良好な結果が得られた。回収率 についてはGlu-Aが大豆でマトリックスの 影響を受けて高回収率となった。現在、固相 抽出法の精製および測定条件の検討を行って いる。