Optimization of metabolome analysis by using Fast GC/MS [Intuvo9000GC-5977MSD]

coupled with online solid-phase analytical derivatization technique

(1) Repeatability and Durability test of Amino acid and Organic acid

Introduction

Conventional metabolome analysis in GC/MS requires from 4 hours to overnight for drying and 2 hours for derivatization after sample extraction. Online **solid-phase derivatization (SPD)** dramatically reduces the pretreatment time and stabilizes the time finishing derivatization until the start of a GC/MS analysis, thus it is expected to more stable data acquisition.

In addition, an easy-to-use instrument is desirable as it is possible to perform high-speed analysis and measure multiple samples in line with the speeding up of pretreatment especially for beginners of GC/MS analysis. In this note, reproducibility and durability tests of amino acids and organic acids were conducted using a system that connects SPL-M100 as an online SPAD system and Intuvo 9000GC + 5977B MSD capable of high-speed analysis.

Instruments

Fast GC/MS and Online SPAD system

Intuvo 9000GC-5977B MS with SPL-M100

Pretreatment workflow

Benefit -

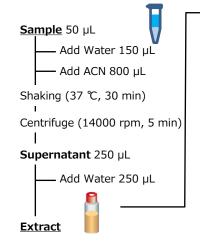
[Intuvo9000GC]

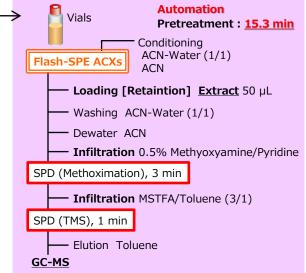
- Fast analysis
- ·Easy handling
- Using Guard chip

[SPL-M100]

- •Extremely shorter pretreatment time
- •Sequenced pretreatment and injection

Guard chip [®]


· Easy changing


column cutting

Not required

·Role as precolumn

Online SPE-GC: SPL-M100

Analytical condition

GC Intuvo9000C

Column DB-5MS, 15 m \times 0.25 mm I.D. , df=0.25 μm

Oven Temp. 80° C (1 min)- 20° C/min- 220° C- 30° C/min- 310° C (3 min) (total 14 min)

MMI Temp. 220℃ (0.5 min)-70℃/min-290℃

Liner Ultra inert liner, single tapered, low pressure drop, glass wool

Injection mode Split (50:1)
Guard chip Temp. Oven track

Carrier gas flow 1.0 mL/min (Constant flow)

Transfer line Temp. 290℃

MS 5977B

Mode Scan (*m/z* 70-470)

Ion source Temp. 250° C Quadropole Temp. 150° C

Sample

Information

第15回 メタボロームシンポジウム 「高速GC/MSとオンライン固相誘導体化を用いたメタボローム分析の最適化」

杉立久仁代1,佐々野僚 ー2,佐久井徳広1,大塚 剛史1,中村貞夫1 1アジレント・テクノロジー 株式会社、2株式会社 アイスティサイエンス

AISTI SCIENCE

Product

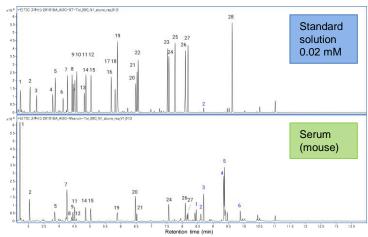
Online SPE-GC SPL-M100

Solid phase cartridge

Flash-SPE

GC large volume injection port

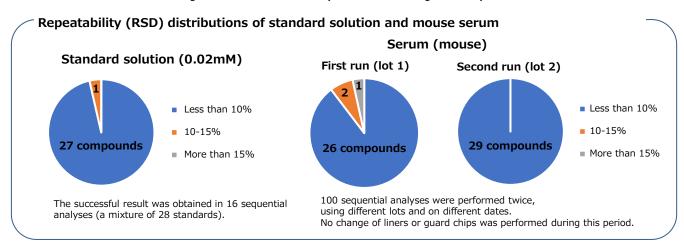
LVI-S250


AISTI SCIENCE CO.,Ltd.

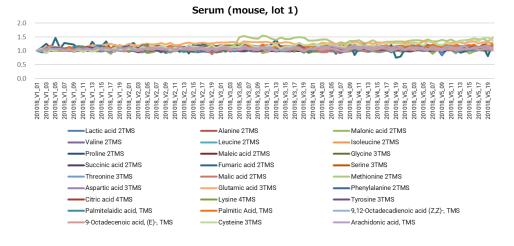
Tel: +81-73-475-0033 E-mail: <u>as@aisti.co.jp</u> HP: <u>www.aisti.co.jp</u>

Results and Discussion

(1) Repeatability test


Total ion chromatograms and the result of the repeatability test are shown by analysis of standard solution (amino acids and organic acids) and mouse serum.

- 1. Lactic acid 2TMS 2. Alanine 2TMS
- 3. Oxalic acid 2TMS 4. Malonic acid 2TMS
- 4. Maionic acid 21 N 5. Valine 2TMS
- 6. Benzoic acid TMS
- 7. Leucine 2TMS 8. Isoleucine 2TMS
- 9. Proline 2TMS
- 10. Maleic acid 2TMS 11. Glycine 3TMS
- 12. Succinic acid 2TMS 13. Fumaric acid 2TMS
- 14. Serine 3TMS
- 15. Threonine 3TMS
- 16. Malic acid 2TMS
- 17. Methionine 2TMS


- 18. Aspartic acid 3TMS
- 19. Pyroglutamic acid 2TMS
- 20. Glutamic acid 3TMS
- 21. Phenylalanine 2TMS
- 22. Tartaric acid 4TMS
- 23. Shikimic acid 4TMS
- 24. Citric acid
- 25. Quinic acid
- 26. Lysine 4TMS
- 27. Tyrosine 3TMS 28. Cysteine 3TMS
- 1. Gluconic acid 6TMS
- 2. Palmitelaiic acid TMS
- 3. Palmitic acid TMS
- 4. 9,12-Octadecadienoic acid (Z,Z)-, TMS
- 5. 9-Octadecenoic acid (E), TMS
- 6. Arachidonic acid TMS

Total ion chromatograms of standard solution (amino acids and organic acids) and mouse serum

(2) Durability test

The change in detection response is shown below (the result of the first run). No particular trends were observed in these responses. A stable result was also obtained in the second run. These results show that this is a very robust system that does not require liner replacement in 200 sequential analyses of real samples.

