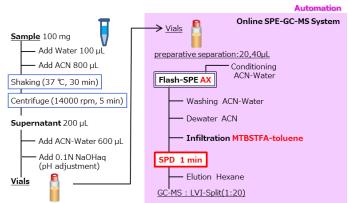
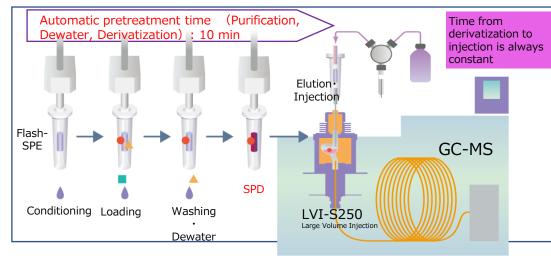

Development of simultaneous analysis of short-chain fatty acids and organic acids by solid-phase derivatization method (Sample : Blue cheese)


Introduction

In conventional metabolome analysis, short-chain fatty acids are difficult to be pretreated using the same methods as in conventional metabolome analysis because of concerns about vaporization loss in the freeze-drying/centrifugal drying process, and methods such as diethyl ether extraction under hydrochloric acidic conditions are often used. Therefore, in this study, we developed a method for simultaneous analysis of short-chain fatty acids and organic acids by MTBSTFA derivatization reagents using an automated solid-phase derivatization on-line SPE/GC/MS system that does not require a lyophilization step.



SPE-GC-MS system for metabolome analysis (Image)

Example of solid-phase derivatization pretreatment flow

Solid phase extraction to GC-MS injection process (fully automated process)

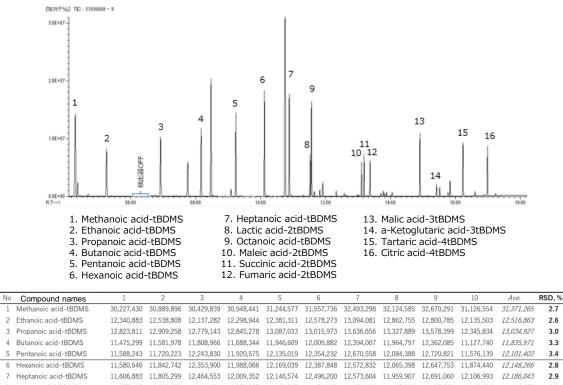
AISTI SCIENCE

Product

SPE-GC system SGI-M100

Solid phase cartridge Flash-SPE

GC Lage Volume Injection LVI-S250



AiSTI SCIENCE CO., Ltd.

Tel: +81-73-475-0033 E-mail: as@aisti.co.ip HP: www.aisti.co.jp

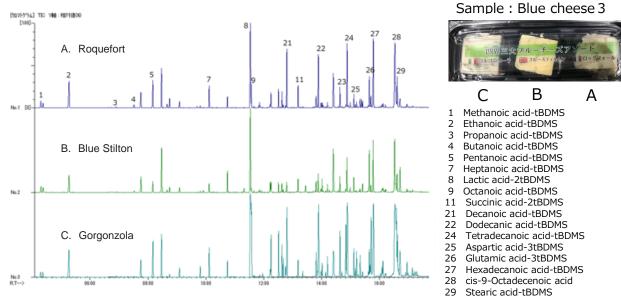
AiSTI Application Note

SCAN total ion chromatograms and reproducibility of standard solutions by this method

2.7

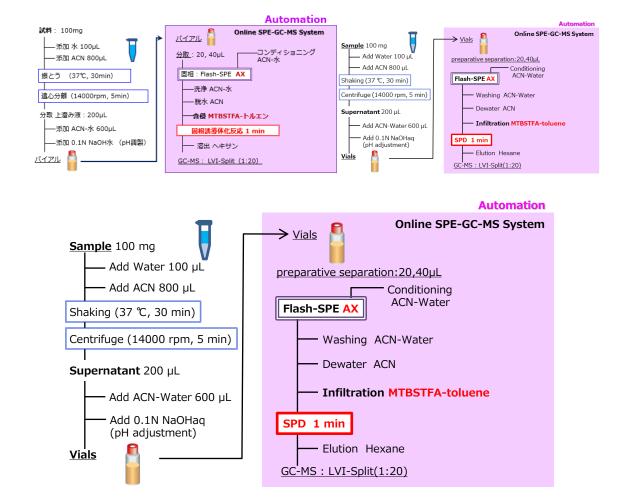
2.6

3.0


3.3

3.4

28


0	Hexanoic aciu-LDDIVIS	11,360,040	11,042,742	12,555,900	11,900,000	12,109,039	12,307,040	12,572,652	12,000,000	12,047,755	11,074,440	12,140,200	2.0
7	Heptanoic acid-tBDMS	11,606,883	11,805,299	12,464,553	12,009,352	12,146,574	12,496,200	12,573,604	11,959,907	12,691,060	12,106,993	12,186,043	2.9
8	Lactic acid-2tBDMS	1,077,185	1,230,088	1,131,334	1,076,805	1,162,595	1,154,103	1,154,143	1,145,913	1,187,630	1,112,992	1,143,279	4.1
9	Octanoic acid-tBDMS	10,608,992	10,881,088	11,527,448	11,111,574	11,200,905	11,651,375	11,407,126	10,950,090	11,613,534	11,248,975	11,220,111	3.0
10	Maleic acid-2tBDMS	1,867,779	1,969,324	2,040,317	1,900,232	2,065,959	2,002,221	1,949,168	1,898,625	2,022,759	2,113,877	1,983,026	4.0
11	Succinic acid-2tBDMS	2,406,066	2,438,793	2,495,130	2,401,336	2,499,333	2,510,922	2,491,212	2,377,200	2,506,791	2,573,343	2,470,013	2.5
12	Fumaric acid-2tBDMS	4,193,048	4,331,927	4,480,305	4,218,660	4,487,927	4,390,857	4,285,980	4,205,144	4,422,052	4,579,983	4,359,588	3.1
13	Malic acid-3tBDMS	1,570,355	1,544,780	1,523,746	1,576,209	1,573,185	1,590,439	1,612,939	1,578,652	1,571,389	1,623,141	1,576,484	1.8
14	a-Ketoglutaric acid-3tBDMS	553,488	530,143	534,318	509,953	582,938	521,569	534,178	552,656	537,514	609,245	546,600	5.4
15	Tartaric acid-4tBDMS	563,021	521,446	497,159	546,241	530,917	526,143	540,008	583,506	526,641	580,916	541,600	5.1
16	Citric acid-4tBDMS	924.916	849.805	796.506	911.965	892,992	862.443	834,170	973.466	842.453	1.025.026	891.374	7.8

SCAN total ion chromatogram comparison of three blue cheeses

[Summary]

Good chromatograms were obtained for both short-chain fatty acids and organic acids, including formic and acetic acids. The derivatization reaction time was 2 minutes, and the automated pretreatment took about 10 minutes. Solid-phase derivatization with MBSTFA enabled automated and rapid analysis without a lyophilization step. This method was found to be effective for the simultaneous analysis of short-chain fatty acids and organic acids.

