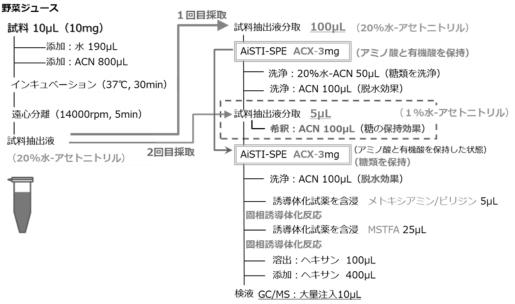
固相誘導体化を用いた低濃度のアミノ酸および有機酸と高濃度の糖類を含む試料の 一斉分析法の開発

Development of simultaneous analysis with in-SPE derivatization method for low concentrated amino acid and organic acid and high concentrated sugar.


(AISTI Science Co.¹, Wakayama prefecture ², Dept Biotech, Grad Sch Eng, Osaka Univ.³) OR.Sasano¹, S.Osaki², M.Furuno³, E.Fukusaki³

Short Abstract: When the peak of high concentrated sugar is appeared in the chromatogram, it is also difficult to measure both low concentrated amino acids and organic acids. Therefore, by using in-SPE derivatization method technology. At the first sample load, we kept the amino acid and organic acid in SPE cartridge, and the second sample load, less than 1/20 sample amount load into the same SPE cartridge enable to catch the sugar with in the same dynamic range. Thus, we have achieved to analyze for amino acid, organic acid and sugar in simultaneously.

Keywords: Amino acid, Organic acid, Sugar, In-SPE derivatization

緒言:一般的な GCMS 測定対象のメタボロミクスにおいては、アミノ酸、有機酸、糖類を一斉に分析する必要がある。一方、ヒトなどの生体由来のサンプルや食品由来のサンプルなどには多数の成分が様々な濃度範囲で含有している。しかし、高濃度の糖類が存在すると、そのピークのリテンションタイムに近接する低濃度のアミノ酸や有機酸の測定が困難になるという問題が生じている。また、高濃度の糖類が大量に GCMS に導入されると、分離カラムの液相の保持可能な量を超え、目的成分も含めてリテンションタイムが大きくずれることがあり、解析が困難になることがある。さらに、高濃度の糖類が MS に導入されることにより、MS が汚れやすくなり、感度低下につながる。このように低濃度の成分と高濃度の成分が混在するサンプルの一斉分析が難しい要因となっている。

実験: 固相抽出の技術を応用し、第1回目の試料負荷では糖類は固相に保持させず、アミノ酸と有機酸を固相に保持させておき、第2回目の試料負荷では先の試料量の1/20以下にして先の固相に糖類を保持させ、アセトニトリルで洗浄することで脱水を行い、アミノ酸と有機酸と糖質が固相に保持された状態で誘導体化試薬を固相に添加含浸させて誘導体化し、その後、一斉にヘキサンで溶出して、大量注入法で10μL 注入し、質量分析装置で SCAN にて測定した。

結果と考察: 2段階に分けて試料量および溶媒を調製して固相に負荷することで、低濃度のアミノ酸および有機酸を多く固相に保持させ、高濃度の糖類を同じ固相に少なく保持させることができた。その結果、得られたクロマトグラムは同じダイナミックレンジ内でそれぞれのピーク強度を得ることができた。これにより、GCMSに負荷を与えることなく、低濃度のアミノ酸および有機酸と高濃度の糖類を含む試料の一斉分析が可能になることがわかった。

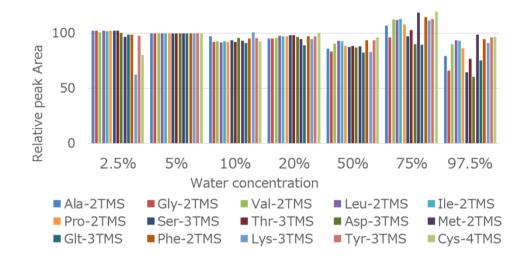
第65回質量分析総合討論会, ポスター発表 2017年5月17-19日(つくば市)

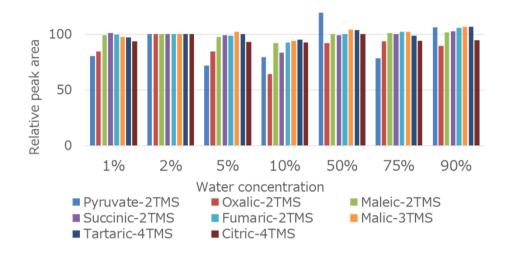
固相誘導体化を用いた低濃度のアミノ酸および有機酸と 高濃度の糖類を含む試料の一斉分析法の開発

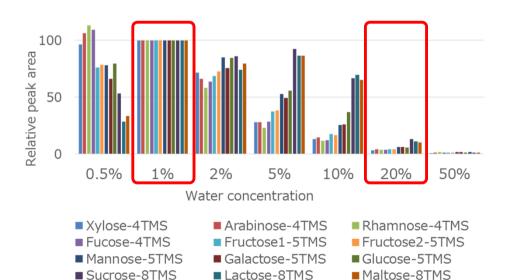
○佐々野僚一1・大崎秀介2・古野正浩3・福崎英一郎3 アイスティサイエンス1・和歌山県工業技術センター2・阪大院工3

Beyond your Imagination

課題と目的


低濃度の成分と高濃度の成分が混在する サンプルの一斉分析の課題


- 高濃度の糖類により、低濃度のアミノ酸や 有機酸の測定が困難になる。
- 高濃度の糖類が大量にGCMSに導入される と、分離カラムの液相の保持可能な量を超 え、正確な測定が困難になる。
- 高濃度の糖類がMSに導入されることにより、MSが汚れやすくなり、感度低下につながる。


【研究目的】

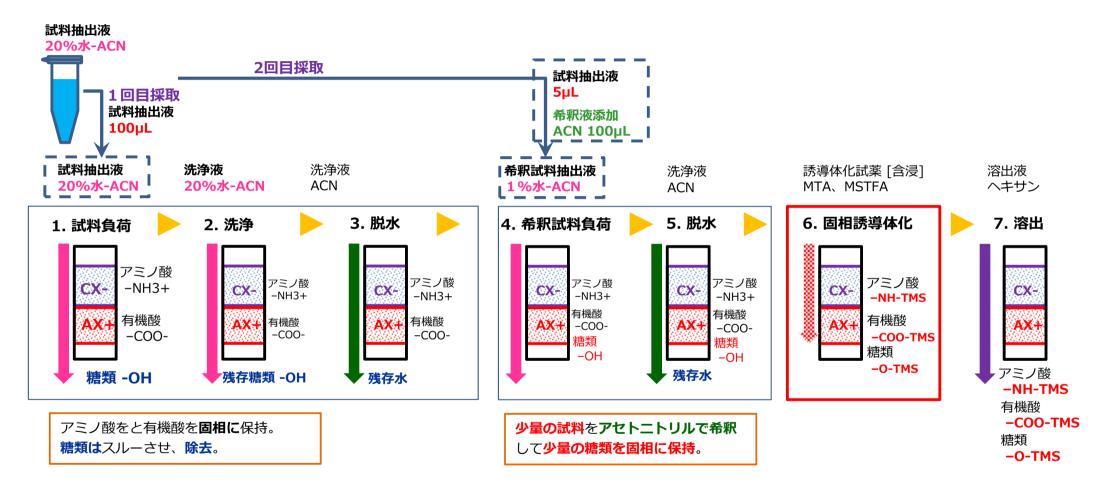
高濃度の糖類を低濃度のアミノ酸や有機酸の測定値と同じダイナミックレンジ内にすることを目的として、2段階に分けて試料を分取し、それぞれを同じ固相に保持させる2段階試料分取法を開発した。

☞ポイント

第一溶媒

20%水-アセトニトリル溶液では

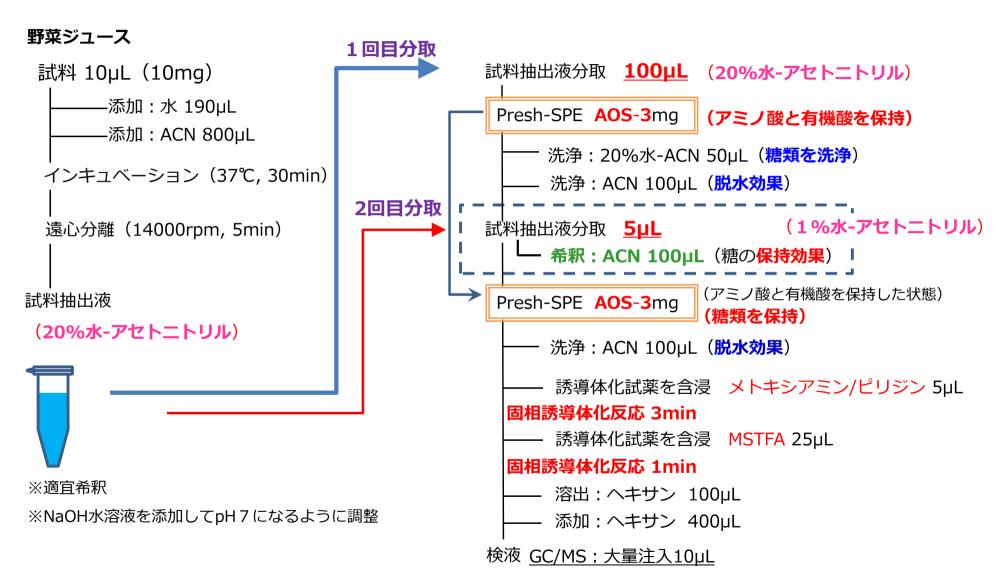
糖類を除去して、


アミノ酸と有機酸を保持することが可能。

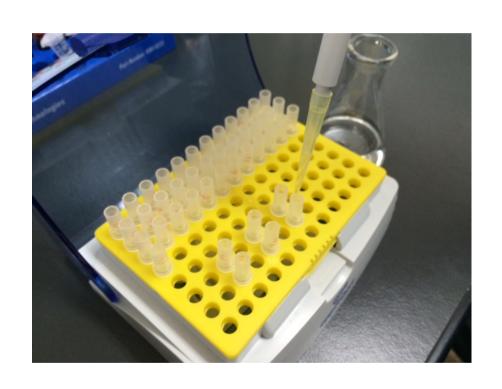
第二溶媒

1%水-アセトニトリル溶液では アミノ酸と有機酸と糖類を保持することが可能。

ASTI KOMET


2段階試料分取法:構想

第1回目の試料負荷では糖類は固相に保持させず、アミノ酸と有機酸を固相に保持させておき、第2回目の試料 負荷では先の試料量の1/20以下にして先の固相に糖類を保持させ、アセトニトリルで洗浄することで脱水を行い、 アミノ酸と有機酸と糖質が固相に保持された状態で誘導体化試薬を固相に添加含浸させて誘導体化し、その後、 一斉にヘキサンで溶出した。


前処理フロー

操作写真

測定条件

ANTI SCILICE

PTV Injector LVI-S250(AiSTI Science)

Insert Type Spiral Insert

Injector Temp. 70° (0.1min)-120 $^{\circ}$ (min-240 $^{\circ}$ C-50 $^{\circ}$ (min-300 $^{\circ}$ (12min)

Auto Samplar Agilent 7693

Syring 50μL Injection Volume 10μL

GC Agilent 7890B

Inlet Mode Solvent Vent Mode

Vent 150mL/min, 70kPa, 0.06min

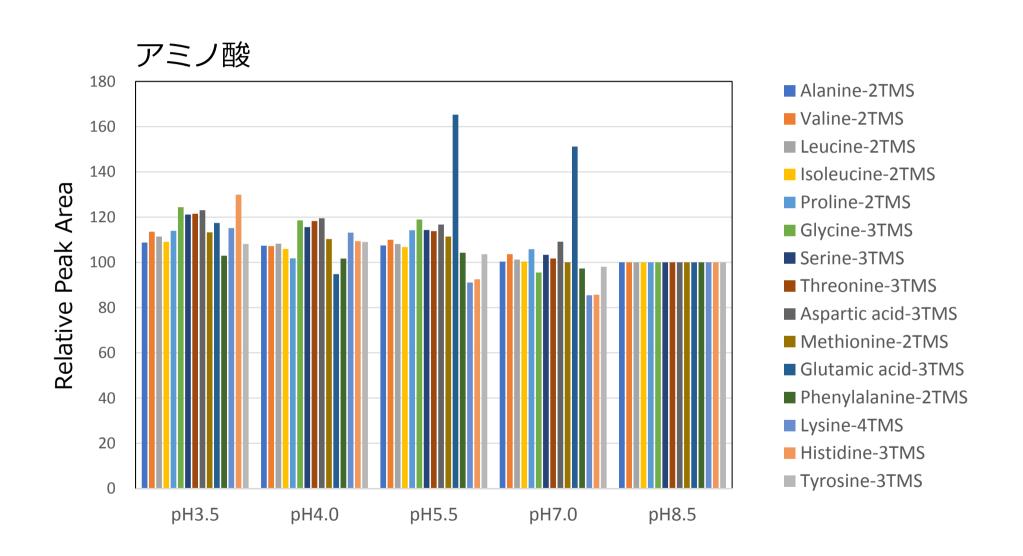
Splite Parge Flow 50mL/min, 3min

Flow Mode Constant Flow, 1.2ml/min

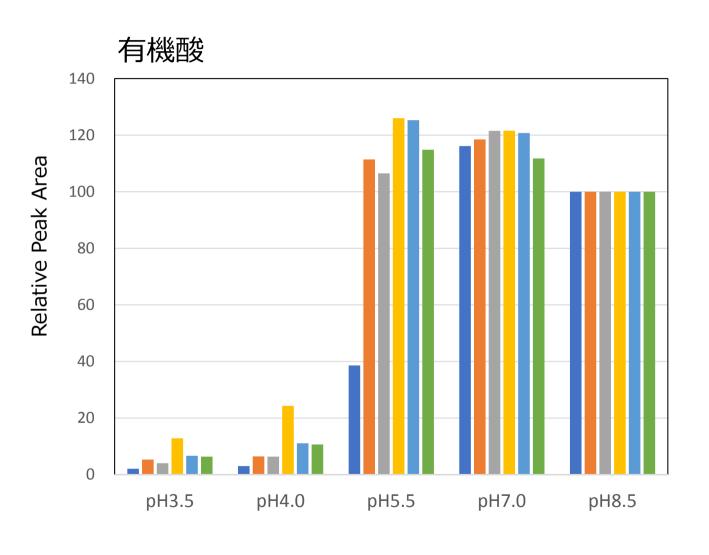
Column DB-5ms, 0.25mm i.d. X 30m, df;0.25µm

Oven Temp. 60° C(2.5min)- 20° C/min- 310° C(1min)

Trans. Line Temp. 280℃


MS Agilent 5977B

Ion Souce Temp. 230℃

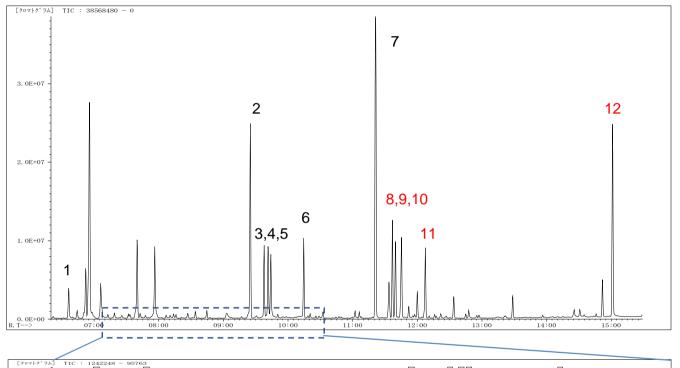

MS Method SCAN, m/z;70-500

試料負荷時の抽出液のpHと保持について

試料負荷時の抽出液のpHと保持について

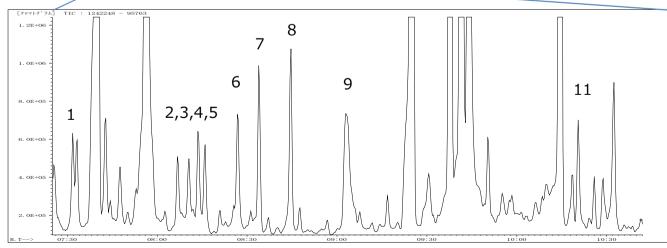
- Succinic acid-2TMS
- Fumaric acid-2TMS
- Malic acid-3TMS
- Ketoglutaric acid-MO-2TMS
- Tartaric acid-4TMS
- Citric acid-4TMS

結果:


有機酸においては試料負荷時の 抽出液のpHが低いと保持され ないことがわかった。よって、 試料を負荷する時の抽出液は pH7になるように調整するこ ととした。

AST SCINCE

本法による標準溶液を用いた再現性

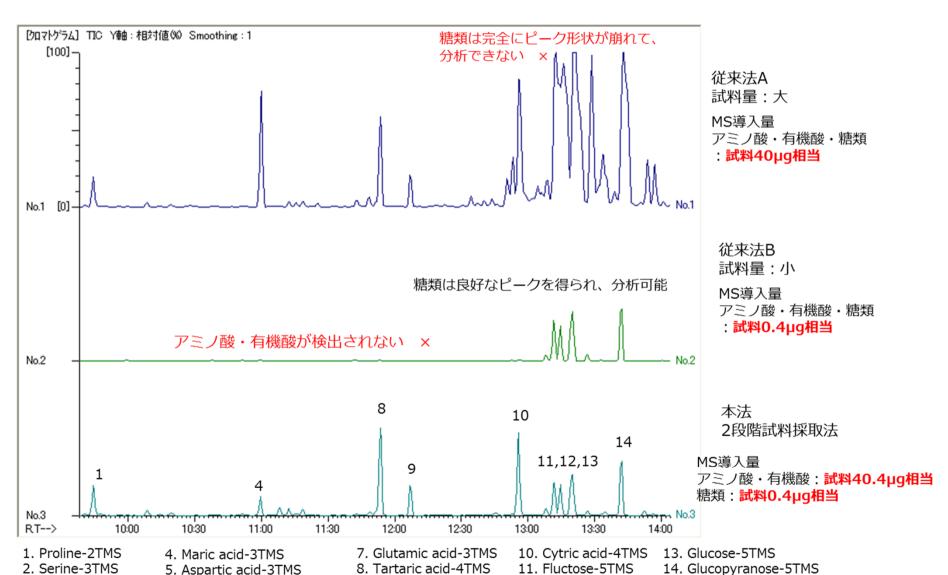

No. 化合物名		アミノ酸および有機酸 0.05nm ol/uL 50uL					N o	No. 化合物名 <u>.</u>	糖類 0.2nm ol/uL 5uL					
10. 11.口197日	ST-1	ST-2	ST-3	ST-4	A ve	RSD (%)	No. %∀)	化白物石	ST-1	ST-2	ST-3	ST-4	A ve	RSD (%)
1 Pyruvic acid-M 0-TM S	326,078	272,621	255,639	303,726	289,516	10.9	26	Xylose-M O-4TM S	1,829,954	1,697,406	1,884,760	1,854,972	1,816,773	4.6
2 0 xa lic ac id-2TM S	228,791	247,419	238,435	229,875	236,130	3.7	27	Arabinose-M0-4TMS	2,058,363	1,927,036	2,180,936	2,151,136	2,079,368	5.5
3 Maleicacid-2TMS	2,101,596	2,201,338	2,189,384	2,277,568	2,192,472	3.3	28	Rham nose-M $0-4$ TM S	1,133,837	1,058,002	1,208,867	1,172,861	1,143,392	5.7
4 Succinic acid-2TM S	1,545,773	1,811,758	1,531,092	1,741,508	1,657,533	8.5	29	Fucose-M 0-4TM S	915,640	846,252	950,447	926,120	909,615	4.9
5 Fum aric acid-2TM S	1,736,037	1,888,235	1,729,101	1,903,735	1,814,277	5.2	30	Fructose1-M 0-5TM S	2,097,758	2,064,597	2,148,115	2,143,372	2,113,461	1.9
6 Malicacid-3TMS	652,172	715,041	633,750	696,375	674,335	5.6	31	Fructose2-M 0-5TM S	1,643,276	1,635,447	1,695,825	1,747,072	1,680,405	3.1
7 Ketoglutaric acid-M -2TM S	1,743,632	1,766,843	1,692,053	1,836,823	1,759,838	3.4	32	M annose-M O-5TM S	4,836,740	4,851,336	4,937,350	5,090,237	4,928,916	2.4
8 Tartaric acid-4TM S	1,373,960	1,441,944	1,313,024	1,419,340	1,387,067	4.1	33	Galactose-M 0-5TM S	3,865,132	3,869,771	3,920,023	3,996,825	3,912,938	1.6
9 Citric acid-4TM S	1,230,029	1,294,887	1,202,971	1,273,394	1,250,320	3.3	34	G lucose-M 0-5TM S	3,379,203	3,121,917	3,190,987	3,180,244	3,218,088	3.5
10 Alanine-2TMS	8,640,462	9,028,803	9,243,813	9,480,040	9,098,280	3.9	35	G lucopyranose-5TM S	548,010	654,027	630,117	691,119	630,818	9.6
11 Valine-2TMS	1,643,565	1,598,273	1,795,816	1,983,400	1,755,264	9.9	36	Sucrose-8TM S	2,622,777	2,662,113	2,631,348	2,696,903	2,653,285	1.3
12 Leucine-2TM S	524,794	517,891	555,474	589,075	546,809	6.0	37	Lactose1-M 0-8TM S	3,725,973	3,468,644	3,464,426	3,533,066	3,548,027	3.5
13 Isoleucine-2TMS	2,145,613	2,184,722	2,256,030	2,403,115	2,247,370	5.0	38	Lactose2-8TM S	4,602,143	5,581,471	5,268,097	5,638,305	5,272,504	9.0
14 Proline-2TMS	5,966,070	5,815,625	6,337,728	6,947,649	6,266,768	8.0	39	M altose1-M $0-8TM$ S	4,552,684	4,072,476	4,110,055	4,065,236	4,200,113	5.6
15 Glycine-3TMS	465,546	464,208	486,616	491,786	477,039	3.0	40	M altose2-8TM S	3,659,795	4,138,740	3,773,779	4,336,212	3,977,132	7.9
16 Serine-3TM S	6,733,940	6,765,371	7,090,181	7,561,905	7,037,849	5.5								
17 Threonine-3TM S	1,638,309	1,692,383	1,725,648	1,806,406	1,715,687	4.1								
18 Aspartic acid-3TM S	7,876,615	7,698,440	8,112,766	8,337,593	8,006,354	3.5								
19 Methionine-2TMS	401,614	403,554	416,804	439,198	415,293	4.2								
20 Glutamicacid-3TMS	1,775,455	1,595,572	1,826,798	1,865,958	1,765,946	6.8								
21 Phenylalanine-2TMS	6,911,026	6,847,395	7,029,301	7,367,841	7,038,891	3.3								
22 Tyrosine-2TM S	5,707,831	5,797,850	5,428,516	6,026,842	5,740,260	4.3								
23 Lysine-4TMS	1,480,711	1,440,106	1,686,430	1,684,583	1,572,958	8.3								
24 Histidine-3TM S	138,428	132,212	152,731	157,374	145,186	8.1								
25 Tyrosine-3TM S	371,747	362,896	416,279	423,004	393,482	7.8								

本法による野菜ジュースのSCANトータルイオンクロマトグラム

- 1. Alanine-2TMS
- 2. Malic acid-3TMS
- 3. Asparatic acid-3TMS
- 4. Pyroglutamic acid-2TMS
- 5. GAVA-3TMS
- 6. Glutamic acid-3TMS
- 7. Citric acid-4TMS
- 8. Fructose1-MO-5TMS
- 9. Fluctose2-MO-5TMS
- 10.Glucose-MO-5TMS
- 11. Glucopyronose-5TMS
- 12.Sucrose-8TMS

拡大

- 1. Valine-2TMS
- 2. Isoleucine-2TMS
- 3. Proline-2TMS
- 4. Glycine-3TMS
- 5. Succinic acid-2TMS
- 6. Fumaric acid-2TMS
- 7. Serine-3TMS
- 8. Threonine-3TMS
- 9. Asparatic acid-3TMS
- 10. Tartaric acid-4TMS
- 11.Phenylalanine-2TMS


本法による野菜ジュースを用いた再現性

Δ	
AISTI SCHACE	

No.	化合物名 _	野菜ジュース 10uL/1m L 4倍希釈 1 回目100uL 2 回目5uL									
NO.		P J- 1	PJ-2	P J- 3	P J- 4	PJ-5	PJ-6	P J- 7	A ve	RSD (%)	
1	Succinic acid-2TM S	53,618	48,219	53,185	55,224	50,265	53,965	51,095	52,224	4.7	
2	Fum aric acid-2TM S	13,489	11,865	12,732	12,848	11,804	12,087	13,646	12,639	5.9	
3	M alic acid-3TM S	794,415	724,411	793,269	803,023	722,560	788,610	791,110	773,914	4.5	
4	Ketoglutaric acid-M 0-21	10,287	9,840	10,415	10,414	9,592	10,145	10,393	<i>10,155</i>	3.2	
5	Tartaric acid-4TM S	9,313	8,245	8,340	8,706	7,902	8,655	8,584	8,535	5.2	
6	C itric ac id-4TM S	1,966,814	1,935,224	1,934,789	1,938,684	1,909,637	1,948,231	1,949,949	1,940,475	0.9	
7	Alanine-2TMS	2,845,774	2,768,258	2,657,313	2,774,700	2,662,174	2,694,419	2,777,270	2,739,987	2.6	
8	Valine-2TM S	101,107	88,755	87,413	92,007	74,199	87,422	102,797	90,529	10.6	
9	Leucine-2TM S	15,321	14,916	12,936	14,241	12,279	14,520	14,842	14,151	7.9	
10	Isoleucine-2TMS	63,155	50,295	53,582	58,315	47,137	49,470	57,837	<i>54,256</i>	10.6	
11	Proline-2TM S	458,672	393,806	425,565	442,178	347,122	412,539	434,530	416,345	8.9	
12	Glycine-3TMS	21,668	22,811	20,153	23,835	22,879	21,285	20,946	21,940	5.9	
13	Serine-3TM S	476,122	443,964	407,985	449,604	381,791	429,997	474,545	<i>437,715</i>	7.8	
14	Threonine-3TM S	78,341	78,139	72,696	78,255	70,169	74,558	77,714	<i>75,696</i>	4.3	
15	Aspartic acid-3TM S	4,686,933	4,643,713	4,436,285	4,519,353	4,386,816	4,574,875	4,786,882	4,576,408	3.1	
16	G lutam ic acid-3TM S	4,736,619	4,882,719	4,744,648	4,812,985	4,716,805	4,689,354	4,954,272	4,791,057	2.0	
17	Phenylalanine-2TM S	257,196	257,661	234,500	255,148	244,192	261,769	278,415	<i>255,554</i>	5.4	
18	Tyrosine-2TM S	31,487	35,662	32,902	37,777	33,518	39,844	43,109	36,328	11.5	
19	Fructose1-M 0-5TM S	2,062,980	1,994,412	2,042,655	1,997,072	2,008,716	2,003,833	2,146,394	2,036,580	2.7	
20	Fructose2-M 0-5TM S	1,711,374	1,647,589	1,673,083	1,650,628	1,653,134	1,638,625	1,689,720	1,666,308	1.6	
21	M annose-M O-5TM S	51,091	49,298	51,429	49,616	49,484	49,335	50,989	50,177	1.9	
22	G lucose-M O-5TM S	2,535,728	2,186,072	2,194,972	2,152,255	2,144,596	2,346,947	2,809,710	2,338,611	10.7	
23	G lucopyranose-5TM S	742,148	786,844	801,596	816,807	827,676	759,322	625,699	765,727	9.0	
24	Sucrose-8TM S	1,847,061	1,746,771	1,728,064	1,720,861	1,710,034	1,725,824	1,789,754	1,752,624	2.8	

フルーツジュースを用いた各法による SCANトータルイオンクロマトグラム比較

12. Fluctose-5TMS

9. Asparagine-3TMS

3. Threonine-3TMS

6. Aminobutyric acid-3TMS

まとめ

- 2段階に分けて試料量および溶媒を調製して固相に負荷することで、 低濃度のアミノ酸および有機酸を多く固相に保持させ、高濃度の糖 類を同じ固相に少なく保持させることができた。
- 2段階試料分取法にて得られたクロマトグラムは同じダイナミック レンジ内でそれぞれのピーク強度を得ることができた。
- GCMSに負荷を与えることなく、低濃度のアミノ酸および有機酸と 高濃度の糖類を含む試料の一斉分析が可能になることがわかった。