2014年10月16日~17日 第37回 農薬残留分析研究会(仙台国際センター)

STQ法におけるハチミツ中 ネオニコチノイド分析への応用

株式会社アイスティサイエンス

○小西賢治、土居恵子、佐々野僚一





**AISTI SCIENCE** 

### 背景



- クロチアニジン、イミダクロプリド、チアメトキサム は2013年12月より2年間EU全域で使用禁止。
- 国産ハチミツからネオニコチノイド系農薬の一部が検出されたとの報告がある。

→ 迅速な分析が必要

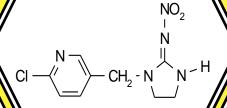
### 目的



- ・ ハチミツ中ネオニコチノイド系農薬の分析
  - ⇒ネオニコチノイド系殺虫剤5成分について添加回収試験を行った。
- ・ハチミツ中残留農薬の一斉分析

⇒ネオニコチノイド系農薬を含む222成分について添加回収試験を 行った。




※残留農薬一斉分析法

( Solid phase extraction Technique with QuEChERS method )



## 測定農薬





LogP=0.57

クロチアニジン

$$\begin{array}{c|c} & & & & \\ & & & \\ \text{CI} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

チアメトキサム

LogP=0.70

LogP= -0.13

系殺虫剤

チアクロプリド

**LogP= 1.26** 

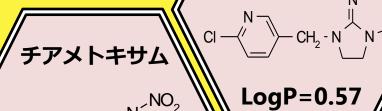
アセタミプリド

$$CH_{3} C = N$$

$$C = N$$

$$C = N$$

$$CH_{2}N$$


$$CH_{3}$$

LogP=0.80



## 測定農薬

#### EUで規制



$$CI \longrightarrow S \longrightarrow N \longrightarrow CH_3$$

$$LogP = -0.13$$

系殺虫剤

NO<sub>2</sub>

### チアクロプリド

#### アセタミプリド

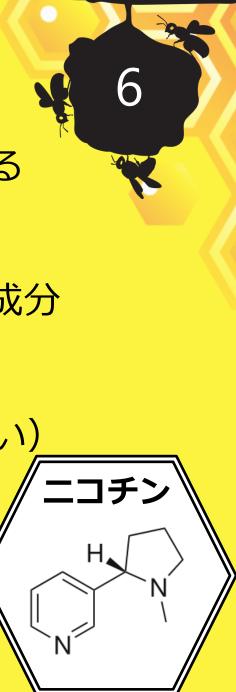
LogP=0.70

クロチアニジン

$$CH_3 CN$$

$$C = N$$

$$C = N$$


$$CH_2 N$$

$$CH_3$$

### 特長

- ニコチンと似た構造、性質を持っているが、毒性は比較的低い。
- 浸透移行性が高く、根から吸収された成分 が植物全体に浸透する。
- 分配係数(LogPow)が低い(=極性が高い)

成分が多い。



**AISTI SCIENCE** 

#### **AISTI SCIENCE** はちみつの成分 20% 水分 ■タンパク質 ■脂質 80% ■炭水化物 ■ 灰分 炭水化物の成分組成 ■スクロース 44% ■グルコース ■フルクトース 50% ■マルトース ■ガラクトース

### 実験方法 (使用試薬)

- 1)標準品
- · PL2005 農薬LC/MS Mix 4~10(林純薬工業)
- · STQ-LC法用農薬混合標準溶液(林純薬工業)



【関東化学】

塩化ナトリウム、クエン酸水素二ナトリウム・1.5水和物(鹿1級)、 クエン酸三ナトリウム・2水和物(特級)、アセトン、アセトニトリ ル、メタノール、メタノール(LC/MS用)

【和光純薬工業】

硫酸マグネシウム(特級)、酢酸アンモニウム(特級)

【オルガノ】

超純水(PURELAB Ultraにより作成)



### 装置および測定条件

AISTI SCIENCE

9

自動前処理装置:ST-L300(アイスティサイエンス)

HPLC: Prominence (島津製作所)

MS/MS : API3200 (エービー・サイエックス)

分析カラム : Lcolumn2 ODS 2.1×150mm 3.0um(化学物質評価研究機構)

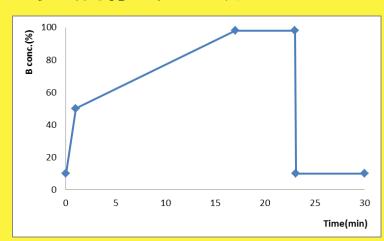
移動相 A液 : 0.5mmol/L 酢酸アンモニウム水溶液

B液 : 0.5mmol/L 酢酸アンモニウム含有メタノール

流速 : 0.2mL/min

注入量 : 5uL

分析時間 : 30min


カラム温度 : 40℃

イオン化モード: ESI Positive

イオンスプレー電圧: 5500V

イオン源温度 : 350℃

測定モード : MRM



| time(min) | 0  | 1  | 17 | 23 | 23.1 | 30 |
|-----------|----|----|----|----|------|----|
| A(%)      | 90 | 50 | 2  | 2  | 90   | 90 |
| B(%)      | 10 | 50 | 98 | 98 | 10   | 10 |

### 前処理フロー

ハチミツ 5g

- ─ 水 10mL
- アセトニトリル 10mL

振とう

NaCl(食塩) 1gクエン酸3Na2水和物 1gクエン酸水素2Na1.5水和物 0.5gMgSO<sub>4</sub>(無水硫酸マグネシウム) 4g

撹拌(手で振とう 1分間)

遠心分離(3500rpm 5分間)

上澄みを分取

















### 前処理フロー

Point 1

ハチミツ 5g

─ 水 10mL

— アセトニトリル 10mL

試料中水分量と抽出溶媒量が 1:1となるように水分を添加

振とう

Point 2

- NaCl(食塩) 1g クエン酸3Na2水和物 1g クエン酸水素2Na1.5水和物 0.5g MgSO4(無水硫酸マグネシウム)4g

NaCl+MgSO<sub>4</sub> : 塩析作用 クエン酸 ・ 経療が用

**AISTI SCIENCE** 

クエン酸:緩衝作用

撹拌(手で振とう 1分間)

遠心分離(3500rpm 5分間)

上澄みを分取

### ポイント





#### 遠心分離前

遠心分離前は全体的に白濁している 様子であった。



### 遠心分離後

有機層、試料層、水層に分かれる。 有機層と水層が混ざりやすく、操作 に注意が必要である。

### 前処理フロー

自動化

アセトニトリル層分取 1mL (試料 0.5g相当)

Smart SPE C18-30mg + PSA-30mg

— 溶出 0.4%ギ酸含有メタノール(pH2.5)1mL

流出液

─ 添加 水 0.5mL

Smart SPE C18-50mg

─ 洗液 メタノール-水(4/1) 1mL







定容(4 mL, 水で調製) LC-MS/MS測定(5uL)

### 前処理フロー



Point 3

アセトニトリル層分取 1mL (試料 0.5g相当)

Smart SPE C18-30mg + PSA-30mg

— 溶出 0.4%ギ酸含有メタノール(pH2.5)1mL

C18:無極性

PSA:陰イオン、極性

流出液

Point 4

<mark>─ 添加 水 0.5mL</mark>

Smart SPE C18-50mg

洗液 メタノール-水(4/1) 1mL

水添加により溶媒極性を調整

定容(4 mL, 水で調製) LC-MS/MS測定(5uL)

### 添加回収試験結果

ネオニコチノイド系農薬のみ抜粋



| 試料 | はちみつ     |          |     |           |     |
|----|----------|----------|-----|-----------|-----|
|    | 試料中添加濃度  | 10       | ppb |           |     |
|    | _        | <u>,</u> |     |           | n=5 |
| _  |          | 絶対検量線    | RSD | マトリックス検量線 | RSD |
| _  | 化合物名     | 回収率(%)   | (%) | 回収率(%     | (%) |
|    | アセタミプリド  | 95       | 6   | 100       | 6   |
|    | クロチアニジン  | 79       | 6   | 100       | 6   |
|    | イミダクロプリド | 97       | 7   | 101       | 7   |
|    | チアクロプリド  | 90       | 4   | 112       | 4   |
|    | チアメトキサム  | 77       | 4   | 118       | 4   |

#### MRMクロマトグラム ネオニコチノイド系農薬のみ抜粋

AISTI SCIENCE

16

STD1.25ppb 試料中濃度10ppb クロチアニジン

5.75 900 800 700 256.1>175.1

イミダクロッ

256.1>175... Area: 4863

2000 1000 0 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 Time, min

アセタミプリド

223.0>126.0

Area : 30498

Area: 8022 (0.15ppb)

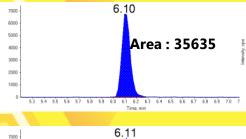
6.11

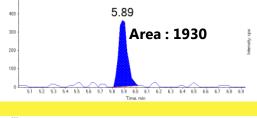
5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7

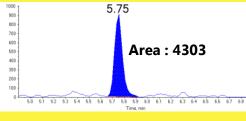
Area: 0

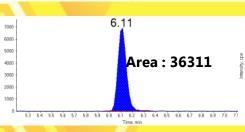
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

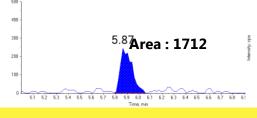
250.0>132.0

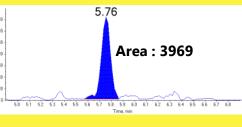

Area: 3197


Area: 0


ブランク試料


添加試料

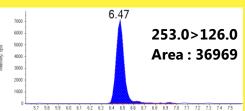

スパイク試料





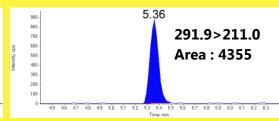




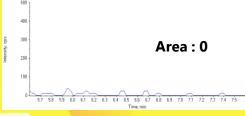


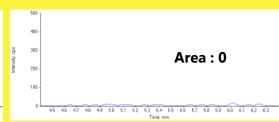

# MRMクロマトグラム


ネオニコチノイド系農薬のみ抜粋

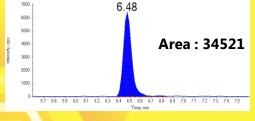
STD1.25ppb 試料中濃度10ppb

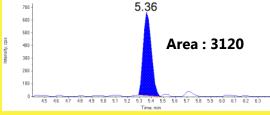



チアクロプリド

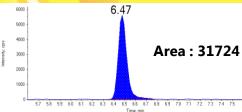

#### チアメトキサム

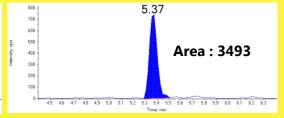



**AISTI SCIENCE** 


ブランク試料







添加試料





スパイク試料





#### 添加回収試験結果①

試料中濃度0.01ppm(n=5)

|    | 9-6 |
|----|-----|
| 28 | 18  |

| _ |     |                      |       |      |       |           |     |                        |       |       |       |      |
|---|-----|----------------------|-------|------|-------|-----------|-----|------------------------|-------|-------|-------|------|
|   |     |                      | 絶対検量線 |      |       | マトリックス検量線 |     |                        |       | 絶対検量線 |       | 食量線  |
|   |     |                      | 平均回収率 | RSD  | 平均回収率 | RSD       |     |                        | 平均回収率 | RSD   | 平均回収率 | RSD  |
|   | No. | Sample Name          | (%)   | (%)  | (%)   | (%)       | No. | Sample Name            | (%)   | (%)   | (%)   | (%)  |
|   | 1   | 1-Naphthylacetamide  | 94.6  | 6.2  | 108.4 | 6.2       | 38  | Cloransulam-methyl     | 102.7 | 11.1  | 116.7 | 11.1 |
|   | 2   | 3-OH-carbofuran      | 96.3  | 12.1 | 102.0 | 12.1      | 39  | Clothianidin           | 78.7  | 5.9   | 100.0 | 5.9  |
|   | 3   | Abamectin            | 89.1  | 3.1  | 102.2 | 3.1       | 40  | Cumyruron              | 98.6  | 10.7  | 105.3 | 10.7 |
| A | 4   | Acephate             | 63.9  | 1.4  | 92.5  | 1.4       | 41  | cyanazine              | 92.0  | 8.7   | 121.4 | 8.7  |
|   | 5   | Acetamiprid          | 95.0  | 5.8  | 99.8  | 5.8       | 42  | Cyazofamid             | 102.9 | 12.3  | 123.7 | 12.3 |
|   | 6   | Acibenzolar-S-methyl | 96.7  | 16.7 | 95.2  | 16.7      | 43  | Cycloate               | 94.7  | 7.4   | 100.3 | 7.4  |
|   | 7   | Aldicarb             | 115.0 | 9.2  | 128.4 | 9.2       | 44  | Cycloprothrin          | -     | -     | -     | - 1  |
|   | 8   | Aldoxycarb           | 80.3  | 3.5  | 108.9 | 3.5       | 45  | Cyclosulfamuron        | 92.5  | 7.0   | 110.1 | 7.0  |
|   | 9   | Anilofos             | 94.6  | 1.8  | 104.6 | 1.8       | 46  | Cyflufenamide          | 99.2  | 6.5   | 101.6 | 6.5  |
|   | 10  | Aramite              | 78.4  | 7.8  | 95.1  | 7.8       | 47  | Cyproconazole-1        | 97.6  | 5.0   | 113.0 | 5.0  |
|   | 11  | atrazine             | 92.6  | 2.7  | 113.5 | 2.7       | 48  | Cyproconazole-2        | 93.9  | 9.1   | 88.9  | 9.1  |
| V | 12  | Azafenidin           | 97.3  | 7.9  | 113.6 | 7.9       | 49  | Cyprodinil             | 105.0 | 3.8   | 107.5 | 3.8  |
|   | 13  | Azamethiphos         | 176.6 | 6.4  | 101.8 | 6.4       | 50  | DDVP                   | 117.1 | 10.1  | 86.1  | 10.1 |
|   | 14  | Azimsulfuron         | -     | -    | -     | -         | 51  | demeton-S-methyl       | 99.5  | 7.8   | 143.6 | 7.8  |
|   | 15  | Azinphos-methyl      | 94.7  | 19.0 | 108.6 | 19.0      | 52  | Di-allate              | 90.9  | 11.5  | 107.2 | 11.5 |
|   | 16  | Azoxystrobin         | 102.1 | 5.7  | 113.9 | 5.7       | 53  | Dichlosulam            | 88.4  | 15.5  | 96.1  | 15.5 |
| 7 | 17  | Bendiocarb           | 103.8 | 4.3  | 112.9 | 4.3       | 54  | Diclomezine            | 108.0 | 18.1  | 128.6 | 18.1 |
|   | 18  | Bensulfuron-methyl   | 94.9  | 6.7  | 110.8 | 6.7       | 55  | Diclotopos             | 101.0 | 4.0   | 105.2 | 4.0  |
|   | 19  | Benzofenap           | 97.4  | 5.5  | 107.8 | 5.5       | 56  | Difenoconazole1and2    | 97.3  | 12.3  | 109.5 | 12.3 |
|   | 20  | Bitertanol           | 106.1 | 8.9  | 111.4 | 8.9       | 57  | Diflubenzuron          | 99.0  | 13.3  | 110.5 | 13.3 |
|   | 21  | Boscalid             | 101.0 | 9.8  | 114.7 | 9.8       | 58  | Dimethirimol           | 95.8  | 1.6   | 95.1  | 1.6  |
|   | 22  | Bromacil             | 60.1  | 31.1 | 113.1 | 31.1      | 59  | Dimethoate             | 93.0  | 7.3   | 104.7 | 7.3  |
|   | 23  | Butafenacil          | 91.0  | 2.9  | 106.4 | 2.9       | 60  | DimethomorphE          | 94.9  | 11.3  | 96.4  | 11.3 |
|   | 24  | Carbaryl             | 111.8 | 7.8  | 117.5 | 7.8       | 61  | DimethomorphZ          | 95.7  | 5.8   | 121.9 | 5.8  |
| • | 25  | Carbofuran           | 104.2 | 4.7  | 101.7 | 4.7       | 62  | Dimeton-s-methyl       | 111.8 | 9.8   | 99.1  | 9.8  |
| Z | 26  | carboxin             | 102.4 | 7.6  | 102.4 | 7.6       | 63  | Diuron                 | 100.1 | 15.8  | 107.0 | 15.8 |
|   | 27  | Carpropamide         | 87.7  | 9.7  | 96.2  | 9.7       | 64  | Dymuron                | 102.4 | 4.0   | 96.2  | 4.0  |
|   | 28  | Chloridazon          | 73.3  | 10.1 | 101.8 | 10.1      | 65  | Epoxiconazole          | 96.5  | 5.6   | 107.7 | 5.6  |
| V | 29  | Chlorimuron-ethyl    | 104.2 | 6.3  | 115.2 | 6.3       | 66  | Ethametsulfuron-methyl | 96.0  | 7.2   | 118.8 | 7.2  |
|   | 30  | Chlorsulfuron        | 116.0 | 9.1  | 155.9 | 9.1       | 67  | Ethoxysulfuron         | 89.5  | 21.2  | 101.7 | 21.2 |
|   | 31  | Chlorxuron           | 108.8 | 7.6  | 103.8 | 7.6       | 68  | Fenamidone             | 96.2  | 8.3   | 107.3 | 8.3  |
| 7 | 32  | Chromafenozide       | 100.6 | 5.1  | 108.4 | 5.1       | 69  | Fenamiphos             | 100.3 | 3.0   | 111.0 | 3.0  |
|   | 33  | Cinosulfuron         | 122.9 | 3.0  | 112.1 | 3.0       | 70  | Fenbuconazole          | 95.4  | 8.6   | 108.4 | 8.6  |
| 7 | 34  | Clodinafop acid      | 91.4  | 12.0 | 93.6  | 12.0      | 71  | Fenhexamid             | 93.9  | 12.4  | 100.3 | 12.4 |
|   | 35  | Clofentezine         | 94.7  | 8.2  | 97.9  | 8.2       | 72  | Fenobucarb             | 98.1  | 3.9   | 106.6 | 3.9  |
|   | 36  | Clomeprop            | 101.1 | 11.8 | 108.0 | 11.8      | 73  | Fenoxaprop-ethyl       | 132.6 | 28.1  | 77.5  | 28.1 |
|   | 37  | Cloquintocet-mexyl   | 94.7  | 3.8  | 99.5  | 3.8       | 74  | Fenoxycarb             | 97.4  | 9.4   | 99.8  | 9.4  |

#### 添加回収試験結果②

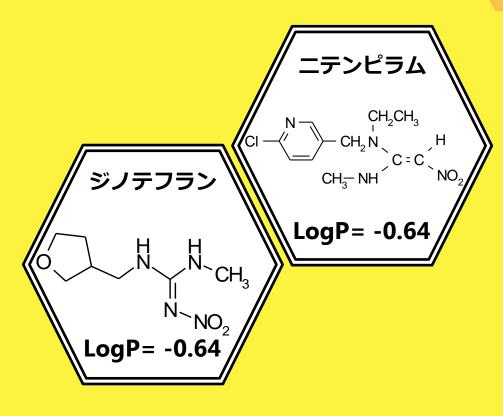
試料中濃度0.01ppm(n=5)



|     |     |                       |       |      |         | <u></u>    |     |                       |       |               |       |      |
|-----|-----|-----------------------|-------|------|---------|------------|-----|-----------------------|-------|---------------|-------|------|
|     |     |                       | 絶対検量線 |      | マトリックス村 | <b>角量線</b> |     |                       |       | <b></b> 絶対検量線 |       | 6量線  |
|     |     |                       | 平均回収率 | RSD  | 平均回収率   | RSD        |     |                       | 平均回収率 | RSD           | 平均回収率 | RSD  |
|     | No. | Sample Name           | (%)   | (%)  | (%)     | (%)        | No. | Sample Name           | (%)   | (%)           | (%)   | (%)  |
|     | 75  | Fenpyroximate E       | 100.8 | 5.0  | 101.6   | 5.0        | 112 | isoxathion-oxon       | 96.5  | 3.6           | 107.7 | 3.6  |
|     | 76  | Fenpyroximate Z       | 86.4  | 2.1  | 94.7    | 2.1        | 113 | Lactofen              | 101.0 | 7.7           | 105.2 | 7.7  |
|     | 77  | Fensulfothion         | 107.5 | 14.6 | 114.9   | 14.6       | 114 | Lenacil               | 103.7 | 4.6           | 102.9 | 4.6  |
|     | 78  | Ferimzone EandZ       | 102.1 | 3.5  | 108.1   | 3.5        | 115 | Linuron               | 116.8 | 8.6           | 123.7 | 8.6  |
|     | 79  | Flazasulfuron         | 102.2 | 6.8  | 98.3    | 6.8        | 116 | Lufenuron             | 100.8 | 6.9           | 92.0  | 6.9  |
|     | 80  | Florasulam            | 112.0 | 6.2  | 120.7   | 6.2        | 117 | Mepanipyrim           | 88.9  | 17.2          | 88.2  | 17.2 |
|     | 81  | Fluazifop             | 95.0  | 9.4  | 115.3   | 9.4        | 118 | Mesosulfuron-methyl   | 97.8  | 3.2           | 102.7 | 3.2  |
|     | 82  | Flufenacet            | 103.2 | 6.8  | 100.8   | 6.8        | 119 | Methabenzthiazuron    | 99.2  | 5.1           | 110.7 | 5.1  |
|     | 83  | Flufenoxuron          | 86.7  | 4.5  | 111.2   | 4.5        | 120 | Methamidophos         | 72.9  | 1.1           | 87.7  | 1.1  |
|     | 84  | Flumetsulam           | 126.9 | 2.5  | 99.1    | 2.5        | 121 | Methiocarb            | 108.5 | 6.9           | 102.7 | 6.9  |
|     | 85  | Fluridone             | 97.4  | 3.9  | 106.8   | 3.9        | 122 | Methomyl              | 91.8  | 10.5          | 95.6  | 10.5 |
| V   | 86  | Flusilazole           | 103.4 | 8.2  | 110.4   | 8.2        | 123 | Methoxyfenozide       | 92.8  | 12.8          | 100.8 | 12.8 |
| •   | 87  | Flutriafol            | 91.8  | 10.7 | 99.8    | 10.7       | 124 | Metosulam             | 101.4 | 8.9           | 100.6 | 8.9  |
|     | 88  | Foramsulfuron         | 89.6  | 18.0 | 96.5    | 18.0       | 125 | Metsulfuron-methyl    | 156.8 | 3.7           | 110.1 | 3.7  |
|     | 89  | Forchlorfenuron       | 92.6  | 5.5  | 103.4   | 5.5        | 126 | mevinphosE            | 107.8 | 11.0          | 112.3 | 11.0 |
|     | 90  | Fosthiazate1and2      | 100.8 | 6.5  | 117.8   | 6.5        | 127 | mevinphosZ            | 97.9  | 4.1           | 106.4 | 4.1  |
| 7   | 91  | Furametpyr            | 101.3 | 3.8  | 114.1   | 3.8        | 128 | monocrotophos         | 96.5  | 8.1           | 102.2 | 8.1  |
|     | 92  | Furathiocarb          | 93.0  | 3.7  | 109.6   | 3.7        | 129 | Monolinuron           | 94.9  | 5.5           | 105.9 | 5.5  |
|     | 93  | Halosulfuron-methyl   | 89.0  | 5.2  | 89.0    | 5.2        | 130 | Myclobutanil          | 91.4  | 3.9           | 96.0  | 3.9  |
|     | 94  | Haloxyfop             | 103.8 | 4.0  | 115.9   | 4.0        | 131 | Naproanilide          | 95.7  | 7.9           | 92.7  | 7.9  |
|     | 95  | Hexaconazole          | 128.3 | 23.8 | 97.2    | 23.8       | 132 | Naptalam              | 109.1 | 10.2          | 115.6 | 10.2 |
|     | 96  | Hexaflumuron          | 120.3 | 13.6 | 101.6   | 13.6       | 133 | Norflurazon           | 93.3  | 6.6           | 101.4 | 6.6  |
| 7   | 97  | hexazinon             | 97.9  | 3.9  | 108.3   | 3.9        | 134 | Novaluron             | 98.1  | 7.5           | 101.3 | 7.5  |
|     | 98  | Hexythiazox           | 90.7  | 5.7  | 101.3   | 5.7        | 135 | omethoate             | 76.8  | 2.5           | 104.3 | 2.5  |
|     | 99  | Imazalil              | 101.1 | 8.3  | 109.9   | 8.3        | 136 | oxadixyl              | 103.7 | 6.4           | 111.7 | 6.4  |
| 7   | 100 | imazamethabenz-methyl | 104.2 | 6.5  | 115.2   | 6.5        | 137 | Oxamyl                | 97.9  | 3.5           | 98.7  | 3.5  |
|     | 101 | Imazaquin             | 96.0  | 3.6  | 122.3   | 3.6        | 138 | Oxaziclomefone        | 98.4  | 5.8           | 108.8 | 5.8  |
|     | 102 | Imazosulfuron         | 128.6 | 30.8 | 53.1    | 30.8       | 139 | Oxycarboxin           | 102.2 | 3.8           | 105.6 | 3.8  |
| V   | 103 | Imibenconazole        | 87.7  | 23.8 | 106.4   | 23.8       | 140 | Pencycuron            | 90.9  | 2.4           | 102.3 | 2.4  |
| •   | 104 | Imidacloprid          | 97.3  | 6.8  | 101.3   | 6.8        | 141 | Penoxsulam            | 105.6 | 7.4           | 125.7 | 7.4  |
|     | 105 | Indanofan             | 112.0 | 16.9 | 89.7    | 16.9       | 142 | Pentoxazone           | 102.9 | 10.3          | 111.8 | 10.3 |
| 7   | 106 | Indoxacarb            | 96.3  | 10.0 | 114.7   | 10.0       | 143 | Phenmedipham          | 119.2 | 6.1           | 115.5 | 6.1  |
|     | 107 | Iodosulfuron-methyl   | 92.0  | 10.6 | 120.6   | 10.6       | 144 | PhosphamidoneE        | 94.9  | 7.8           | 88.5  | 7.8  |
| 7   | 108 | Iprodion              | _     | -    | _       | -          | 145 | PhosphamidoneZ        | 94.7  | 16.2          | 120.7 | 16.2 |
|     | 109 | Iprovalicarb          | 104.3 | 8.1  | 111.5   | 8.1        | 146 | Primicarb             | 95.8  | 3.3           | 115.2 | 3.3  |
|     | 110 | Isoprocarb            | 109.4 | 5.3  | 91.2    | 5.3        | 147 | Primisulfuron methyl  | 96.0  | 14.6          | 96.0  | 14.6 |
|     | 111 | Isoxaflutole          | 121.0 | 10.3 | 101.5   | 10.3       | 148 | prohydrojasmon1and2   | 94.9  | 8.1           | 114.0 | 8.1  |
| \ - | 111 | Isoxaflutole          | 121.0 | 10.3 | 101.5   | 10.3       | 148 | prohydrojasmon i and2 | 94.9  | 8.1           | 114.0 | 8.1  |

#### 添加回収試験結果③

試料中濃度0.01ppm(n=5)




|   |     |                       |       |      | マトリックス検量線 |      |        | 絶対検量線                      |       | マトリックス検量線 |       |      |
|---|-----|-----------------------|-------|------|-----------|------|--------|----------------------------|-------|-----------|-------|------|
|   |     |                       | 平均回収率 | RSD  | 平均回収率     | RSD  |        |                            | 平均回収率 | RSD       | 平均回収率 | RSD  |
|   | No. | Sample Name           | (%)   | (%)  | (%)       | (%)  | No.    | Sample Name                | (%)   | (%)       | (%)   | (%)  |
|   | 149 | Propaguizafop         | 92.2  | 6.0  | 101.1     | 6.0  | 186    | Triasulfuron               | 110.9 | 12.3      | 105.8 | 12.3 |
|   | 150 | propoxur              | 100.8 | 10.2 | 105.9     | 10.2 | 187    | Tribenuron methyl          | 55.0  | 13.4      | 63.7  | 13.4 |
|   | 151 | Propoxycarbazone      | 100.3 | 15.2 | 68.5      | 15.2 | 188    | Tricyclazole               | 88.0  | 6.5       | 105.8 | 6.5  |
|   | 152 | Prosulfuron           | 315.7 | 12.3 | 107.2     | 12.3 | 189    | Tridemorph E               | 70.4  | 6.5       | 79.9  | 6.5  |
|   | 153 | Pyraclostrobin        | 103.5 | 11.0 | 106.1     | 11.0 | 190    | Tridemorph Z               | 64.0  | 29.6      | 65.6  | 29.6 |
|   | 154 | Pyrazolynate          | 149.9 | 5.3  | 116.4     | 5.3  | 191    | Trifloxysulfuron           | 79.4  | 17.3      | 93.7  | 17.3 |
|   | 155 | Pyrazosulfuron-ethyl  | 94.6  | 3.5  | 94.6      | 3.5  | 192    | Triflumuron                | 96.5  | 5.1       | 116.0 | 5.1  |
|   | 156 | Pyriftalid            | 98.9  | 6.2  | 116.6     | 6.2  | 193    | Triflusulfuron methyl      | 104.0 | 12.8      | 103.2 | 12.8 |
|   | 157 | pyroquilon            | 95.5  | 3.4  | 104.7     | 3.4  | 194    | Triticonazole              | 103.0 | 7.2       | 103.9 | 7.2  |
|   | 158 | Quinoclamine          | _     | -    | -         | -    | 195    | XMC                        | 100.8 | 3.0       | 99.2  | 3.0  |
|   | 159 | Quizalofop-ethyl      | 91.4  | 4.9  | 110.9     | 4.9  | Neg-1  | 2-4-D                      | _     | -         | -     | -    |
|   | 160 | Silafluofen           | 39.4  | 5.8  | 39.4      | 5.8  | Neg-2  | 2-4-DP (Dichlorprop)       | _     | -         | -     | -    |
|   | 161 | Simazine              | 106.1 | 11.6 | 100.5     | 11.6 |        | 4-Chlorophenoxyacetic acid | -     | -         | -     | -    |
|   | 162 | Simeconazole          | 98.9  | 12.0 | 113.4     | 12.0 | Neg-4  | Acifluorfen                | _     | -         | -     | -    |
|   | 163 | Simetryn              | 100.5 | 8.1  | 116.3     | 8.1  |        | Bromoxynil                 | _     | -         | -     | -    |
|   | 164 | Spinosyn A            | 74.0  | 3.3  | 83.4      | 3.3  |        | Cloprop                    | _     | -         | -     | -    |
| • | 165 | Spinosyn D            | 62.8  | 2.5  | 74.7      | 2.5  | Neg-7  | Cyclanilide                | -     | -         | -     | -    |
|   | 166 | Spiroxamine-AandB     | 91.5  | 4.7  | 91.5      | 4.7  | Neg-8  | Dicloran                   | 69.8  | 97.4      | 144.3 | 97.4 |
|   | 167 | Sulfentrazone         | 87.8  | 23.3 | 95.4      | 23.3 | Neg-9  | Dimethipin                 | -     | -         | -     | -    |
|   | 168 | Sulfosulfuron         | 87.9  | 14.0 | 115.6     | 14.0 | Neg-10 | Fluroxypyr                 | 73.6  | 11.5      | 85.2  | 11.5 |
|   | 169 | TCMTB                 | 113.4 | 9.2  | 103.5     | 9.2  | _      | Fomesafen                  | 45.8  | 52.5      | 158.0 | 52.5 |
|   | 170 | Tebufenozide          | 104.0 | 6.9  | 104.0     | 6.9  | _      | Formothion                 | _     | -         | _     | -    |
|   | 171 | Tebuthiuron           | 96.8  | 4.0  | 108.0     | 4.0  | _      | Gibberellin                | 149.6 | 2.2       | 101.1 | 2.2  |
|   | 172 | Teflubenzuron         | 115.7 | 19.6 | 140.4     | 19.6 | _      | Hexaflumuron               | 98.1  | 4.0       | 107.5 | 4.0  |
|   | 173 | terbacil              | -     | -    | -         | -    | Neg-15 | -                          | -     | -         | -     | -    |
| 7 | 174 | Tetrachlorvinphos     | 97.0  | 4.5  | 112.2     | 4.5  | _      | Lufenuron                  | 94.4  | 2.7       | 107.3 | 2.7  |
|   | 175 | Tetraconazole         | 78.4  | 35.5 | 82.4      | 35.5 | Neg-17 |                            | -     | -         | -     | -    |
|   | 176 | Thiabendazole         | 96.6  | 3.4  | 115.0     | 3.4  | Neg-18 |                            | 72.8  | 38.2      | 117.2 | 38.2 |
|   | 177 | Thiacloprid           | 89.6  | 4.1  | 112.0     | 4.1  | _      | MCPP (Mecoprop)            | -     | -         | -     | -    |
|   | 178 | Thiamethoxam          | 76.5  | 3.6  | 117.9     | 3.6  | _      | Methoxyfenozide            | 88.0  | 12.3      | 107.8 | 12.3 |
|   | 179 | Thidiazuron           | 91.7  | 9.3  | 134.0     | 9.3  | _      | Naphthaleneacetic acid     | -     | -         | -     | -    |
|   | 180 | Thifensulfuron-methyl | 148.0 | 4.6  | 123.3     | 4.6  | _      | Naproanilide               | 89.9  | 3.6       | 101.3 | 3.6  |
|   | 181 | Thifluzamide          | 100.2 | 8.6  | 106.1     | 8.6  | _      | Norflurazon                | 106.1 | 8.4       | 118.4 | 8.4  |
| • | 182 | Thiodicarb            | 109.3 | 8.0  | 114.8     | 8.0  | _      | Oryzalin                   | 97.3  | 6.9       | 113.6 | 6.9  |
|   | 183 | Tolfenpyrad           | 93.0  | 3.6  | 95.2      | 3.6  | _      | Thidiazuron                | 104.8 | 4.2       | 98.5  | 4.2  |
|   | 184 | Tralkoxydim           | 75.0  | 11.6 | 86.0      | 11.6 |        | Triclopyr                  | -     | -         | _     | -    |
| \ | 185 | Triadimenol           | 101.1 | 10.1 | 104.5     | 10.1 | Neg-27 | Trifluzamide               | 94.6  | 5.5       | 138.7 | 5.5  |

### 今後の課題

ニテンピラム、ジノテフランを含んだ ネオニコチノイド系農薬一斉分析法





### まとめ



- ・ハチミツを試料としてネオニコチノイド系殺虫剤 の分析法を検討した。それぞれの成分において定 量を妨害するピークは見られなかった。
- STQ-LC法を用いることでネオニコチノイド系農薬 以外の成分についても良好な回収率が得られた。