第113回日本食品衛生学会学術講演会 2017年11月9-10日(東京)

A-17 STQ法(残留農薬一斉分析法)における 抽出溶媒量の検討

株式会社アイスティサイエンス ○小西賢治、島三記絵、佐々野僚一、斎藤勲

Beyond your Imagination

AISTI SCIENCE

目的

これまで

- 試料によっては抽出段階で回収が不足している成分が見られた。
- 2回抽出を行うことで、抽出効率、定量性の向上は見られたが 作業手順が煩雑になった。

そこで

- 抽出溶媒量を増やすことで農薬の回収率が向上すると考えた。
- 抽出溶媒アセトニトリルを従来の10mLから15mLに増加させて従来法との検討比較を行った。

抽出溶媒量を増やすメリット

- 抽出溶媒量を15mLとした時、
 最大で10%程度、回収率の向上が期待できる。
- 特に回収率が65-70%未満の化合物は、5~10%向上するため妥当性評価基準範囲内に入る。
- 試料によっては遠心分離後の抽出液量が少ない場合があるが、 抽出溶媒量を15mLとすることで、十分な量の抽出液量が得られる。

デメリット

抽出溶媒量を増やすほどこの効果は高まるが、20mL以上になるとホモジナイズ 時にあふれる、振とう時に混ざりにくいなど操作上の難点があった。

前処理フロー(抽出)

試料 10g (穀類 5g + 水 10mL)

一 アセトニトリル 15mL

ホモジナイズ(13000rpm 1分間)

- NaCl(食塩) 1g クエン酸3Na2水和物 1g クエン酸水素2Na1.5水和物 0.5g MgSO₄(無水硫酸マグネシウム)4g

撹拌(手で振とう 1分間)

遠心分離(3500rpm 5分間)

アセトニトリル層

固相抽出(精製)

試料	試料量(g)	水添加量(mL)
ほうれん草	10	0
甘夏	10	0
大豆	5	10
茶葉	2	10

分析に用いた試料量と水分添加量

遠心分離後の抽出液量(大豆) 左)10mL 右)15mL

前処理フロー(精製)


```
遠心分離上清(アセトニトリル層)※
                                        ※10mL抽出法の場合、抽出液2mL+アセトニトリル1mLで
                                        希釈したものを自動前処理装置にセットし前処理を行った。
                                   LC法
GC-B法
   分取 0.5 mL
                                     分取 0.5 mL
                                     Smart SPE C18-50mg + PSA-30mg
    Smart-SPE C18-30 mg:精製
                                       — 溶出 2%ギ酸含有ACN 0.5mL
     ─ 洗液 アセトニトリルー水(9/1) 0.5 mL
                                     流出液
   流出液
                                      ─ 水 0.5mL
     — 10%食塩水 20 mL
                                     Smart SPE C18-30mg
    Smart-SPE C18-50mg:保持
   窒素乾燥:2分
                                       − 洗液 ACN-水(4/1)0.5 mL
    連結 Smart-SPE PSA-30:精製
                                     定容(2 mL, 水で調製)
       溶出 アセトン-ヘキサン (15/85) 1mL
                                     LC/MS/MS
```

定容(1 mL, アセトン/ヘキサンで調製)

<u>GC/MS(大量注入25uL:試料12.5mg相当)</u>

実験1 添加回収試験による評価

試料:大豆、ほうれん草

大豆 ほうれん草 5g 10g 水分 9.24g 0.62gたんぱく質 0.22g1.69g 脂質 0.04g 0.99g炭水化物 0.31g 1.48g 0.24g0.17g

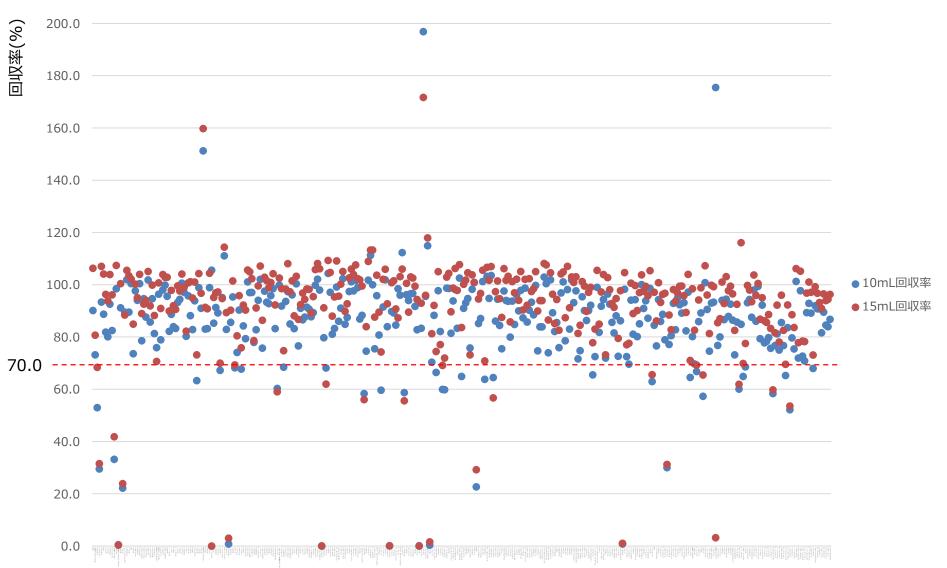
標準液:

PL2005農薬MIX I ~VI、7 (林純薬工業株式会社)

添加濃度:

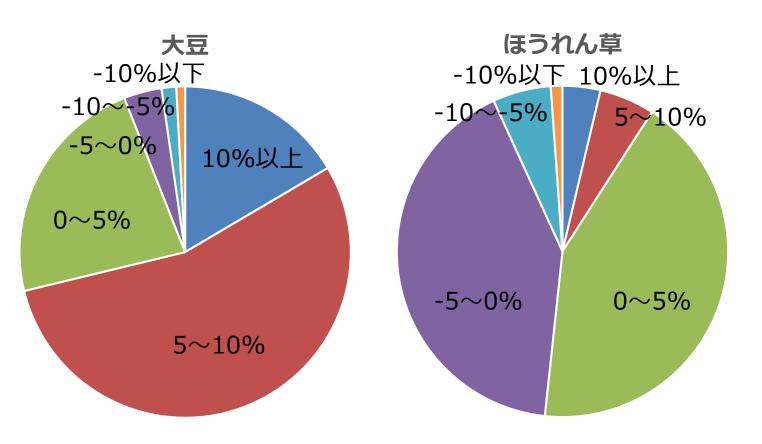
バイアル中0.005mg/L (n=5) いずれかの作物で回収率が10%以上向上した成分

n=5, 回収率(%)での比較(抜粋)

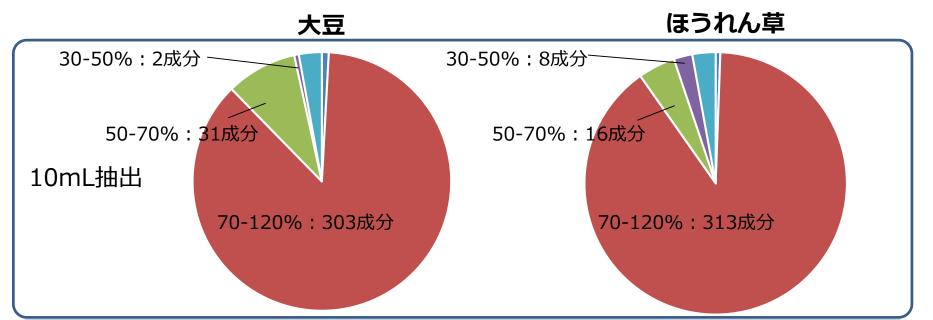

LogPowの低い **水溶性成分**が多い

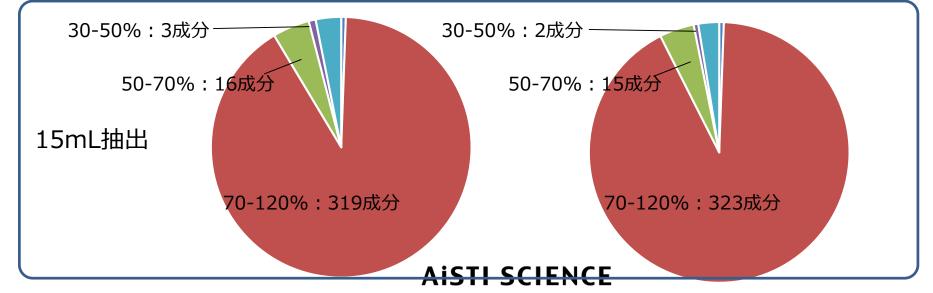
化合物メソッド		 大豆			ほうれん草		
化合物名	10mL抽出	15mL抽出	変動量	10mL抽出	15mL抽出	変動量	LogPow
オキサジキシル	82.1	85.2	3.1	51.7	69.7	17.9	0.7
ホスファミドン I	95.1	94.7	-0.3	57.5	76.7	19.2	0.0
ホスファミドン II	94.1	99.5	5.5	66.5	84.0	17.5	0.8
デメトンーSーメチル	94.7	92.6	-2.1	69.8	83.4	13.6	1.3
プロポキスル	94.1	95.0	1.0	69.1	81.3	12.3	1.6
ジクロルボス	53.0	68.4	15.4	67.4	77.1	9.8	1.9
シアナジン	87.5	92.7	5.2	65.4	80.9	15.5	2.1
シメトリン	83.2	88.1	4.9	67.5	74.7	7.2	2.6
エンドスルファンサルフェート	72.5	83.0	10.5	84.0	87.2	3.2	3.8
キノメチオネート	59.8	71.9	12.1	87.2	83.8	-3.4	3.8
クロフェンテジン(分解物)	73.2	80.7	7.5	43.1	54.2	11.1	4.1
テトラジホン	69.7	82.6	12.9	83.6	89.0	5.3	4.6
キノキシフェン	65.5	77.8	12.3	82.0	83.2	1.3	4.7
ピリブチカルブ	80.2	90.1	10.0	90.5	89.7	-0.8	4.7
エンドスルファン(α)	64.9	83.6	18.7	86.5	86.5	0.0	4.7
ピペロニルブトキシド	86.2	97.7	11.5	88.8	88.2	-0.6	4.8
エンドスルファン (β)	74.0	86.5	12.5	90.1	86.1	-4.0	4.8
メトプレン II	70.3	81.3	10.9	99.0	94.5	-4.5	>6
クロメトキシニル	85.1	97.0	11.9	92.7	90.9	-1.8	不明

LogPowの高い **脂溶性成分**が多い


実験1 抽出溶媒量による評価(大豆)

実験1 回収率変動について




	大豆	ほうれん草
増加量	成分	分数
10%以上	58	13
5 ~ 10%	192	19
0~ 5%	80	150
−5 ~ 0%	13	146
-10 ~ -5%	5	20
-10%以下	3	4

大豆では320成分の回収率が向上した。 ほうれん草では182成分の回収率が向上した。

実験1 添加回収試験結果

実験2 残留試料による評価

農薬が残留した茶、甘夏を用いて抽出溶媒量による比較を行った。

n=5, 面積値での比較

		——— 茶	
化合物名	10mL	15mL	変動比率
アジンホスメチル	2,696	3,035	1.13
アゾキシストロビン	34,683	36,194	1.04
ジフェノコナゾール	14,500	14,578	1.01
フェンブコナゾール	84,322	88,977	1.06
フェンピロキシメート	10,800	11,001	1.02
フルフェノクスロン	259,129	259,588	1.00
ルフェヌロン	6,936	7,155	1.03
メトキシフェノジド	105,301	100,024	0.95
シラフルオフェン	34,377	43,991	1.28
シメコナゾール	6,892	8,096	1.17
テフルベンズロン	2,777	2,909	1.05
チアクロプリド	100,268	103,211	1.03
トルフェンピラド	128,823	129,419	1.00

		 甘夏	
化合物名	10mL	15mL	変動比率
アセタミプリド	1,159,670	1,196,826	1.03
アゾキシストロビン	7,680	9,578	1.25
クロチアニジン	329,839	338,747	1.03
ミクロブタニル	166,811	177,186	1.06
ピラゾリネート	63,352	65,352	1.03
MCPA	34,795	35,460	1.02
MCPB	9,940	10,208	1.03

残留試料においても15mL抽出にすることで、検出量の向上が見られた。

まとめ

• 従来法と15mL抽出法との比較検討を行った。

試料には大豆、ほうれん草を用いて実験を行った。

大豆:320/348成分、ほうれん草:182/348成分で回収率向上が見られた。

• 添加回収試験で良好な結果が得られた。

回収率が70-120%の範囲に入ったのは、

大豆:319/348成分、ほうれん草:323/348成分であった。

• 残留試料においても、検出量向上効果が見られた。

試料には茶、甘夏を用いて実験を行った。

15mL抽出法の方が農薬の検出量が多かった。