Development of in-SPE derivatization method for GC-MS metabolome analysis

Ryoichi SASANO¹, Yoko KOJIMA¹, Shusuke OSAKI², Yoshie TANAKA², Akihiro MATSUMOTO², Toshiyuki YAMASHITA³, Takeshi BAMBA³, Eiichiro FUKUSAKI³ 1;AiSTI SCIECE co., Ltd., 2;Industrial Technology Center of Wakayama prefecture, 3;Osaka University

[Introduction]

Due to complex and long-time sample preparations, including solvent extraction, centrifugal concentration, freeze-drying and derivatization, technical skills have been required in a conventional metabolome analysis for GC-MS. It causes discrepancies in the acquired data from multiple experiments, especially between in analysis batches. Furthermore, it causes a critical problem when the statistical analysis is done because a lot of samples should be handled in the metabolome analysis. The purpose of this study was to develop a rapid and robust method of sample preparation for metabolomics using solid phase extraction (SPE).

[Methods]

CX-SPE derivatization method for Amino acid

derivatization method.

Extracted samples with acetonitrile were loaded on an ion-exchange cartridge SPE. Ion-exchange SPEs were used depending on what kind of chemical functional group the compounds have. The target compounds were retained in the SPE, then the cartridge was washed by acetonitrile for dehydration. Derivatization was done by methoxyamine/pridine and MSTFA which were directly added sequentially on the SPE. After derivatization, the object substances were eluted by acetone/n-hexane. The 10µL of derivatized compounds were injected in the GC-MS with a Large Volume Injection system equipped with a spiral shaped liner.

[Preliminary Results]

A cation-exchange column, CXi, was used for amino acids which have cationic amino group, and an anion-exchange column, AXi, was applied for the compounds which have carbonyl and hydroxyl group, such as organic acids and sugars. Washing with acetonitrile after loading the target compounds enabled not only to eliminate other interferences but also to dehydrate at the same time. It took several hours to dry the samples in the conventional method, while dehydration was done in a few minutes using SPE. In this method, target metabolites which were retained in the SPEs by ion-exchange interaction were methoxyaminated by methoxyamine hydrochlolide in pyridine followed by trimethlysilylation effectively. Derivatized metabolites were changed into less-polar compounds and easily eluted using organic solvent, acetone/n-hexane. The total preparation time from sample loading on the column to derivatization was within 10 minutes, and good reproducibility was obtained.

AX-SPE derivatization method for Organic acid

AX-SPE derivatization method for saccharides

AISTI SCIENCE

ionic exchange solid phase which hold the targeted compounds, the derivatization reaction was proceeding promptly on the solid phase. 3. The operating time of dehydration and derivatization was greatly